IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2021015.html
   My bibliography  Save this paper

Boosting cost-complexity pruned trees On Tweedie responses: the ABT machine

Author

Listed:
  • Trufin, Julien

    (Université Libre de Bruxelles)

  • Denuit, Michel

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

This paper proposes a new boosting machine based on forward stagewise additive modeling with cost-complexity pruned trees. In the Tweedie case, it deals directly with observed res-ponses, not gradients of the loss function. Trees included in the score progressively reduce to the root-node one, in an adaptive way. The proposed Adaptive Boosting Tree (ABT) machine thus automatically stops at that time, avoiding to resort to the time-consuming cross validation approach. A case study performed on motor third-party liability insurance claim data demons-trates the performances of the proposed ABT machine for ratemaking, in comparison with regu-lar gradient boosting trees.

Suggested Citation

  • Trufin, Julien & Denuit, Michel, 2021. "Boosting cost-complexity pruned trees On Tweedie responses: the ABT machine," LIDAM Discussion Papers ISBA 2021015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2021015
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A244325/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Yang & Wei Qian & Hui Zou, 2018. "Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 456-470, July.
    2. Denuit, Michel & Hainaut, Donatien & Trufin, Julien, 2020. "Effective Statistical Learning Methods for Actuaries II : Tree-Based Methods and Extensions," LIDAM Reprints ISBA 2020035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Simon C. K. Lee & Sheldon Lin, 2018. "Delta Boosting Machine with Application to General Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(3), pages 405-425, July.
    4. Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2019. "Predicting Motor Insurance Claims Using Telematics Data—XGBoost versus Logistic Regression," Risks, MDPI, vol. 7(2), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    2. Hainaut, Donatien & Trufin, Julien & Denuit, Michel, 2021. "Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log-link," LIDAM Discussion Papers ISBA 2021012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2021. "RiskLogitboost Regression for Rare Events in Binary Response: An Econometric Approach," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    4. Freek Holvoet & Katrien Antonio & Roel Henckaerts, 2023. "Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff," Papers 2310.12671, arXiv.org, revised Aug 2024.
    5. Viktor Stojkoski & Petar Jolakoski & Igor Ivanovski, 2021. "The short‐run impact of COVID‐19 on the activity in the insurance industry in the Republic of North Macedonia," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(3), pages 221-242, September.
    6. Zuleyka Díaz Martínez & José Fernández Menéndez & Luis Javier García Villalba, 2023. "Tariff Analysis in Automobile Insurance: Is It Time to Switch from Generalized Linear Models to Generalized Additive Models?," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    7. Willame, Gireg & Trufin, Julien & Denuit, Michel, 2023. "Boosted Poisson regression trees: A guide to the BT package in R," LIDAM Discussion Papers ISBA 2023008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Simon CK Lee, 2020. "Delta Boosting Implementation of Negative Binomial Regression in Actuarial Pricing," Risks, MDPI, vol. 8(1), pages 1-21, February.
    9. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    10. Dong-Young Lim, 2021. "A Neural Frequency-Severity Model and Its Application to Insurance Claims," Papers 2106.10770, arXiv.org, revised Feb 2024.
    11. Nemanja Milanović & Miloš Milosavljević & Slađana Benković & Dušan Starčević & Željko Spasenić, 2020. "An Acceptance Approach for Novel Technologies in Car Insurance," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    12. Quan Zhiyu & Valdez Emiliano A., 2018. "Predictive analytics of insurance claims using multivariate decision trees," Dependence Modeling, De Gruyter, vol. 6(1), pages 377-407, December.
    13. Kevin Kuo & Daniel Lupton, 2020. "Towards Explainability of Machine Learning Models in Insurance Pricing," Papers 2003.10674, arXiv.org.
    14. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 163-172.
    15. Thomas Poufinas & Periklis Gogas & Theophilos Papadimitriou & Emmanouil Zaganidis, 2023. "Machine Learning in Forecasting Motor Insurance Claims," Risks, MDPI, vol. 11(9), pages 1-19, September.
    16. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    17. Muhammed Taher Al-Mudafer & Benjamin Avanzi & Greg Taylor & Bernard Wong, 2021. "Stochastic loss reserving with mixture density neural networks," Papers 2108.07924, arXiv.org.
    18. Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
    19. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    20. Hu, Changyue & Quan, Zhiyu & Chong, Wing Fung, 2022. "Imbalanced learning for insurance using modified loss functions in tree-based models," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 13-32.

    More about this item

    Keywords

    Risk classification ; Boosting ; Gradient Boosting ; Regression Trees ; Cost-complexity pruning;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2021015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.