Big data and machine learning-based decision support system to reshape the vaticination of insurance claims
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2024.123829
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- K A Smith & R J Willis & M Brooks, 2000. "An analysis of customer retention and insurance claim patterns using data mining: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 532-541, May.
- Mohamed Hanafy & Ruixing Ming, 2021. "Machine Learning Approaches for Auto Insurance Big Data," Risks, MDPI, vol. 9(2), pages 1-23, February.
- Lee, Chien-Chiang & Lee, Chi-Chuan & Chiu, Yi-Bin, 2013. "The link between life insurance activities and economic growth: Some new evidence," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 405-427.
- Sebastian Baran & Przemys{l}aw Rola, 2022. "Prediction of motor insurance claims occurrence as an imbalanced machine learning problem," Papers 2204.06109, arXiv.org.
- Guangyuan Gao & Shengwang Meng & Mario V. Wüthrich, 2019. "Claims frequency modeling using telematics car driving data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(2), pages 143-162, February.
- Roel Henckaerts & Katrien Antonio & Maxime Clijsters & Roel Verbelen, 2018.
"A data driven binning strategy for the construction of insurance tariff classes,"
Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(8), pages 681-705, September.
- Roel Henckaerts & Katrien Antonio & Maxime Clijsters & Roel Verbelen, 2017. "A data driven binning strategy for the construction of insurance tariff classes," Working Papers of Department of Decision Sciences and Information Management, Leuven 583471, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Roel Henckaerts & Katrien Antonio & Maxime Clijsters & Roel Verbelen, 2017. "A data driven binning strategy for the construction of insurance tariff classes," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 583471, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
- Ron S. Kenett & Silvia Salini, 2011. "Rejoinder to ‘Modern analysis of customer satisfaction surveys: comparison of models and integrated analysis’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(5), pages 484-486, September.
- Roel Henckaerts & Marie-Pier Côté & Katrien Antonio & Roel Verbelen, 2021. "Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 255-285, April.
- Yves‐Laurent Grize & Wolfram Fischer & Christian Lützelschwab, 2020. "Machine learning applications in nonlife insurance," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(4), pages 523-537, July.
- Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
- Benjamin Avanzi & Greg Taylor & Melantha Wang & Bernard Wong, 2023. "Machine Learning with High-Cardinality Categorical Features in Actuarial Applications," Papers 2301.12710, arXiv.org.
- Aslam, Faheem & Hunjra, Ahmed Imran & Ftiti, Zied & Louhichi, Wael & Shams, Tahira, 2022. "Insurance fraud detection: Evidence from artificial intelligence and machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).
- AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Adamowski, Jan F. & Li, Yan, 2019. "Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
- Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 2," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 230-258, July.
- Chenglong Ye & Lin Zhang & Mingxuan Han & Yanjia Yu & Bingxin Zhao & Yuhong Yang, 2022. "Combining Predictions of Auto Insurance Claims," Econometrics, MDPI, vol. 10(2), pages 1-15, April.
- Jauhar, Sunil Kumar & Sethi, Sunil & Kamble, Sachin S. & Mathew, Shawn & Belhadi, Amine, 2024. "Artificial intelligence and machine learning-based decision support system for forecasting electric vehicles' power requirement," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
- Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Ron S. Kenett & Silvia Salini, 2011. "Modern analysis of customer satisfaction surveys: comparison of models and integrated analysis," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(5), pages 465-475, September.
- Carmona, Pedro & Dwekat, Aladdin & Mardawi, Zeena, 2022. "No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure," Research in International Business and Finance, Elsevier, vol. 61(C).
- Simon C. K. Lee & Sheldon Lin, 2018. "Delta Boosting Machine with Application to General Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(3), pages 405-425, July.
- Valentina Peleckienė & Kęstutis Peleckis & Gitana Dudzevičiūtė & Kęstutis K. Peleckis, 2019. "The relationship between insurance and economic growth: evidence from the European Union countries," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 32(1), pages 1138-1151, January.
- Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
- Ai Cheo Yeo & Kate A. Smith & Robert J. Willis & Malcolm Brooks, 2001. "Clustering technique for risk classification and prediction of claim costs in the automobile insurance industry," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(1), pages 39-50, March.
- Hultkrantz, Lars & Nilsson, Jan-Eric & Arvidsson, Sara, 2012. "Voluntary internalization of speeding externalities with vehicle insurance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 926-937.
- Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 1," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 207-229, July.
- Rachana Jaiswal & Shashank Gupta & Aviral Kumar Tiwari, 2024. "Decoding mood of the Twitterverse on ESG investing: opinion mining and key themes using machine learning," Management Research Review, Emerald Group Publishing Limited, vol. 47(8), pages 1221-1252, March.
- Dwivedi, Yogesh K. & Sharma, Anuj & Rana, Nripendra P. & Giannakis, Mihalis & Goel, Pooja & Dutot, Vincent, 2023. "Evolution of artificial intelligence research in Technological Forecasting and Social Change: Research topics, trends, and future directions," Technological Forecasting and Social Change, Elsevier, vol. 192(C).
- Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
- Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- Reyes-Menendez, Ana & Clemente-Mediavilla, Jorge & Villagra, Nuria, 2023. "Understanding STI and SDG with artificial intelligence: A review and research agenda for entrepreneurial action," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Pramanik, Paritosh & Jana, Rabin K. & Ghosh, Indranil, 2024. "AI readiness enablers in developed and developing economies: Findings from the XGBoost regression and explainable AI framework," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
- Hakan Gunduz, 2021. "An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
- Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
- Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
- Shahroodi, Kambiz & Avakh Darestani, Soroush & Soltani, Samaneh & Eisazadeh Saravani, Adeleh, 2024. "Developing strategies to retain organizational insurers using a clustering technique: Evidence from the insurance industry," Technological Forecasting and Social Change, Elsevier, vol. 201(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
- Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
- Zhang, Yaojun & Ji, Lanpeng & Aivaliotis, Georgios & Taylor, Charles, 2024. "Bayesian CART models for insurance claims frequency," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 108-131.
- Mohamed Hanafy & Ruixing Ming, 2021. "Machine Learning Approaches for Auto Insurance Big Data," Risks, MDPI, vol. 9(2), pages 1-23, February.
- Benjamin Avanzi & Greg Taylor & Melantha Wang & Bernard Wong, 2023. "Machine Learning with High-Cardinality Categorical Features in Actuarial Applications," Papers 2301.12710, arXiv.org.
- Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
- Chen, Xun-Qi & Ma, Chao-Qun & Ren, Yi-Shuai & Lei, Yu-Tian & Huynh, Ngoc Quang Anh & Narayan, Seema, 2023. "Explainable artificial intelligence in finance: A bibliometric review," Finance Research Letters, Elsevier, vol. 56(C).
- Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
- Paolo Castelnovo & Martina Dal Molin, 2021. "The learning mechanisms through public procurement for innovation: The case of government‐funded basic research organizations," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 92(3), pages 411-446, September.
- Katrien Antonio & Christophe Dutang & Andreas Tsanakas, 2021. "Editorial," Post-Print hal-04748464, HAL.
- Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
- Joseph Levitas & Konstantin Yavilberg & Oleg Korol & Genadi Man, 2022. "Prediction of Auto Insurance Risk Based on t-SNE Dimensionality Reduction," Papers 2212.09385, arXiv.org, revised Mar 2023.
- Sebastian Baran & Przemys{l}aw Rola, 2022. "Prediction of motor insurance claims occurrence as an imbalanced machine learning problem," Papers 2204.06109, arXiv.org.
- Shahzad, Fakhar & Zaied, Younes Ben & Shahzad, Muhammad Asim & Mahmood, Faisal, 2024. "Insights into the performance of green supply chain in the Chinese semiconductor industry," International Journal of Production Economics, Elsevier, vol. 273(C).
- Shengkun Xie, 2024. "Analyzing the Influence of Telematics-Based Pricing Strategies on Traditional Rating Factors in Auto Insurance Rate Regulation," Mathematics, MDPI, vol. 12(19), pages 1-23, October.
- Hamed Taherdoost & Mitra Madanchian, 2021. "Empirical Modeling of Customer Satisfaction for E-Services in Cross-Border E-Commerce," Post-Print hal-03741849, HAL.
- Emer Owens & Barry Sheehan & Martin Mullins & Martin Cunneen & Juliane Ressel & German Castignani, 2022. "Explainable Artificial Intelligence (XAI) in Insurance," Risks, MDPI, vol. 10(12), pages 1-50, December.
- Hoffmann, Stefan & Lasarov, Wassili & Dwivedi, Yogesh K., 2024. "AI-empowered scale development: Testing the potential of ChatGPT," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
- Ron S. Kenett & Giancarlo Manzi & Carmit Rapaport & Silvia Salini, 2022. "Integrated Analysis of Behavioural and Health COVID-19 Data Combining Bayesian Networks and Structural Equation Models," IJERPH, MDPI, vol. 19(8), pages 1-26, April.
- Jamotton, Charlotte & Hainaut, Donatien, 2024. "Latent Dirichlet Allocation for structured insurance data," LIDAM Discussion Papers ISBA 2024008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
More about this item
Keywords
Claim frequency; Risk management; Predictive insurance analytics; Sustainable development goals; Machine learning; Big data; LightGBM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524006279. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.