IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v82y2020i4p1059-1086.html
   My bibliography  Save this article

Visualizing the effects of predictor variables in black box supervised learning models

Author

Listed:
  • Daniel W. Apley
  • Jingyu Zhu

Abstract

In many supervised learning applications, understanding and visualizing the effects of the predictor variables on the predicted response is of paramount importance. A shortcoming of black box supervised learning models (e.g. complex trees, neural networks, boosted trees, random forests, nearest neighbours, local kernel‐weighted methods and support vector regression) in this regard is their lack of interpretability or transparency. Partial dependence plots, which are the most popular approach for visualizing the effects of the predictors with black box supervised learning models, can produce erroneous results if the predictors are strongly correlated, because they require extrapolation of the response at predictor values that are far outside the multivariate envelope of the training data. As an alternative to partial dependence plots, we present a new visualization approach that we term accumulated local effects plots, which do not require this unreliable extrapolation with correlated predictors. Moreover, accumulated local effects plots are far less computationally expensive than partial dependence plots. We also provide an R package ALEPlot as supplementary material to implement our proposed method.

Suggested Citation

  • Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
  • Handle: RePEc:bla:jorssb:v:82:y:2020:i:4:p:1059-1086
    DOI: 10.1111/rssb.12377
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12377
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:4:p:1059-1086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.