IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.10605.html
   My bibliography  Save this paper

On Spurious Causality, CO2, and Global Temperature

Author

Listed:
  • Philippe Goulet Coulombe
  • Maximilian Gobel

Abstract

Stips, Macias, Coughlan, Garcia-Gorriz, and Liang (2016, Nature Scientific Reports) use information flows (Liang, 2008, 2014) to establish causality from various forcings to global temperature. We show that the formulas being used hinges on a simplifying assumption that is nearly always rejected by the data. We propose an adequate measure of information flow based on Vector Autoregressions, and find that most results in Stips et al. (2016) cannot be corroborated. Then, it is discussed which modeling choices (e.g., the choice of CO2 series and assumptions about simultaneous relationships) may help in extracting credible estimates of causal flows and the transient climate response simply by looking at the joint dynamics of two climatic time series.

Suggested Citation

  • Philippe Goulet Coulombe & Maximilian Gobel, 2021. "On Spurious Causality, CO2, and Global Temperature," Papers 2103.10605, arXiv.org.
  • Handle: RePEc:arx:papers:2103.10605
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.10605
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Editorial, 2020. "Covid-19 and Climate Change," Journal, Review of Agrarian Studies, vol. 10(1), pages 5-6, January-J.
    2. Jochem Marotzke & Piers M. Forster, 2015. "Forcing, feedback and internal variability in global temperature trends," Nature, Nature, vol. 517(7536), pages 565-570, January.
    3. Piers M. Forster & Harriet I. Forster & Mat J. Evans & Matthew J. Gidden & Chris D. Jones & Christoph A. Keller & Robin D. Lamboll & Corinne Le Quéré & Joeri Rogelj & Deborah Rosen & Carl-Friedrich Sc, 2020. "Current and future global climate impacts resulting from COVID-19," Nature Climate Change, Nature, vol. 10(10), pages 913-919, October.
    4. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    5. Jeff Tollefson, 2014. "Climate change: The case of the missing heat," Nature, Nature, vol. 505(7483), pages 276-278, January.
    6. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575.
    7. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    8. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    9. Giselle Montamat & James H. Stock, 2020. "Quasi-experimental estimates of the transient climate response using observational data," Climatic Change, Springer, vol. 160(3), pages 361-371, June.
    10. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    11. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    12. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    13. Francisco Estrada & Pierre Perron & Benjamin Martinez-Lopez, 2013. "Statistically-derived contributions of diverse human influences to 20th century temperature changes," Boston University - Department of Economics - Working Papers Series 2013-017, Boston University - Department of Economics.
    14. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Macedo & Mara Madaleno, 2022. "Global Temperature and Carbon Dioxide Nexus: Evidence from a Maximum Entropy Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    2. Philippe Goulet Coulombe & Maximilian Göbel, 2021. "On Spurious Causality, CO 2 , and Global Temperature," Econometrics, MDPI, vol. 9(3), pages 1-18, September.
    3. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, October.
    4. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    5. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    6. Britta Gehrke & Brigitte Hochmuth, 2021. "Counteracting Unemployment in Crises: Non‐Linear Effects of Short‐Time Work Policy," Scandinavian Journal of Economics, Wiley Blackwell, vol. 123(1), pages 144-183, January.
    7. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    8. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    9. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    10. Gabriel P. Mathy, 2020. "How much did uncertainty shocks matter in the Great Depression?," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 14(2), pages 283-323, May.
    11. Raffaella Giacomini & Toru Kitagawa & Matthew Read, 2021. "Identification and Inference Under Narrative Restrictions," Papers 2102.06456, arXiv.org.
    12. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    13. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    14. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    15. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    16. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    17. Andres–Escayola, Erik & Berganza, Juan Carlos & Campos, Rodolfo G. & Molina, Luis, 2023. "A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    18. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    19. Victor Pontines, 2021. "The real effects of loan-to-value limits: empirical evidence from Korea," Empirical Economics, Springer, vol. 61(3), pages 1311-1350, September.
    20. Helmut Herwartz & Shu Wang, 2024. "Statistical identification in panel structural vector autoregressive models based on independence criteria," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 620-639, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.10605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.