Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993.
"Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models,"
Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
- Vassilis A. Hajivassiliou & Axel Borsch-Supan, 1990. "Smooth Unbiased Multivariate Probability Simulators for Maximum Likelihood Estimation of Limited Dependent Variable Models," Cowles Foundation Discussion Papers 960, Cowles Foundation for Research in Economics, Yale University.
- Rendtel, Ulrich & Kaltenborn, Ulrich, 2004. "The stability of simulation based estimation of the multiperiod multinominal probit model with individual specific covariates," Discussion Papers 2004/5, Free University Berlin, School of Business & Economics.
- McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
- Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
- Hausman, Jerry A & Wise, David A, 1978.
"A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences,"
Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
- J. A. Hausman & D. A. Wise, 1976. "A Conditional Profit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Working papers 173, Massachusetts Institute of Technology (MIT), Department of Economics.
- Golob, Thomas F. & Reagan, Amelia C., 2002. "Trucking Industry Adoption of Information Technology: A structural Multivariate Discrete Choice Model," University of California Transportation Center, Working Papers qt7kv5f17n, University of California Transportation Center.
- Geweke, John & Keane, Michael P & Runkle, David, 1994.
"Alternative Computational Approaches to Inference in the Multinomial Probit Model,"
The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
- John Geweke & Michael P. Keane & David E. Runkle, 1994. "Alternative computational approaches to inference in the multinomial probit model," Staff Report 170, Federal Reserve Bank of Minneapolis.
- Geweke, John & Keane, Michael & Runkle, David, 1994. "Recursively Simulating Multinomial Multiperiod Probit Probabilities," MPRA Paper 55140, University Library of Munich, Germany.
- McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
- McFadden, Daniel, 1989.
"A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration,"
Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
- Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
- Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997.
"Statistical inference in the multinomial multiperiod probit model,"
Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
- John Geweke & Michael P. Keane & David E. Runkle, 1994. "Statistical inference in the multinomial multiperiod probit model," Staff Report 177, Federal Reserve Bank of Minneapolis.
- Imai, Kosuke & Van Dyk, David A., 2005. "MNP: R Package for Fitting the Multinomial Probit Model," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i03).
- Nobile, Agostino, 2000. "Comment: Bayesian multinomial probit models with a normalization constraint," Journal of Econometrics, Elsevier, vol. 99(2), pages 335-345, December.
- McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
- Muthen, Bengt, 1983. "Latent variable structural equation modeling with categorical data," Journal of Econometrics, Elsevier, vol. 22(1-2), pages 43-65.
- Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
- Jaehwan Kim & Greg M. Allenby & Peter E. Rossi, 2002. "Modeling Consumer Demand for Variety," Marketing Science, INFORMS, vol. 21(3), pages 229-250, December.
- Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
- Ziegler, Andreas, 2002. "Simulated Classical Tests in the Multiperiod Multinomial Probit Model," ZEW Discussion Papers 02-38, ZEW - Leibniz Centre for European Economic Research.
- David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
- Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
- Jason D. Lemp & Kara M. Kockelman & Paul Damien, 2012. "A Bivariate Multinomial Probit Model for Trip Scheduling: Bayesian Analysis of the Work Tour," Transportation Science, INFORMS, vol. 46(3), pages 405-424, August.
- Neuerburg, Christian & Koschate-Fischer, Nicole & Pescher, Christian, 2021. "Menu-Based Choice Models for Customization: On the Recoverability of Reservation Prices, Model Fit, and Predictive Validity," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 1-14.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Patil, Priyadarshan N. & Dubey, Subodh K. & Pinjari, Abdul R. & Cherchi, Elisabetta & Daziano, Ricardo & Bhat, Chandra R., 2017. "Simulation evaluation of emerging estimation techniques for multinomial probit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 9-20.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
- Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
- Vassilis A. Hajivassiliou, 1993.
"Simulating Normal Rectangle Probabilities and Their Derivatives: The Effects of Vectorization,"
Cowles Foundation Discussion Papers
1049, Cowles Foundation for Research in Economics, Yale University.
- Vassilis Argyrou Hajivassiliou, 1993. "Simulating Normal Rectangle Probabilities and Their Derivatives: The Effects of Vectorization," Working Papers _025, Yale University.
- Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
- Andreas Ziegler, 2007. "Simulated classical tests in multinomial probit models," Statistical Papers, Springer, vol. 48(4), pages 655-681, October.
- Gould, Brian W. & Dong, Diansheng, 2000. "The Decision Of When To Buy A Frequently Purchased Good: A Multi-Period Probit Model," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-17, December.
- Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
- Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
- Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986.
"Classical estimation methods for LDV models using simulation,"
Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441,
Elsevier.
- Hajivassiliou, Vassilis A & Ruud, Paul A., 1993. "Classical Estimation Methods for LDV Models Using Simulation," Department of Economics, Working Paper Series qt3cg196fr, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- V.A. Hajivassiliou & P. A. Ruud, 1993. "Classical Estimation Methods for LDV Models Using Simulation," Econometrics 9311002, University Library of Munich, Germany.
- Vassilis A. Hajivassiliou and Paul A. Ruud., 1993. "Classical Estimation Methods for LDV Models Using Simulation," Economics Working Papers 93-219, University of California at Berkeley.
- Vassilis A. Hajivassiliou & Paul A. Ruud, 1993. "Classical Estimation Methods for LDV Models Using Simulation," Cowles Foundation Discussion Papers 1051, Cowles Foundation for Research in Economics, Yale University.
- Lee, Lung-Fei, 1997.
"Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results,"
Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
- Lee, L.F., 1994. "Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models--Some Monte Carlo Results," Papers 94-06, Michigan - Center for Research on Economic & Social Theory.
- Raja Chakir & Olivier Parent, 2009.
"Determinants of land use changes: A spatial multinomial probit approach,"
Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
- Olivier Parent & Raja Chakir, 2008. "Determinants of land use changes: a spatial multinomial probit approach," University of Cincinnati, Economics Working Papers Series 2008-06, University of Cincinnati, Department of Economics.
- Daniel Ackerberg, 2009.
"A new use of importance sampling to reduce computational burden in simulation estimation,"
Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
- Daniel A. Ackerberg, 2001. "A New Use of Importance Sampling to Reduce Computational Burden in Simulation Estimation," NBER Technical Working Papers 0273, National Bureau of Economic Research, Inc.
- Ruben Loaiza-Maya & Didier Nibbering, 2020.
"Scalable Bayesian estimation in the multinomial probit model,"
Papers
2007.13247, arXiv.org, revised Mar 2021.
- Ruben Loaiza-Maya & Didier Nibbering, 2020. "Scalable Bayesian Estimation in the Multinomial Probit Model," Monash Econometrics and Business Statistics Working Papers 25/20, Monash University, Department of Econometrics and Business Statistics.
- Natarajan, Ranjini & McCulloch, Charles E. & Kiefer, Nicholas M., 2000. "A Monte Carlo EM method for estimating multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 34(1), pages 33-50, July.
- Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
- Park, Sang Soo & Lee, Chung-Ki, 2011. "베이지안 추정법을 이용한 주택선택의 다항프로빗 모형 분석 [Analysis of housing choice using multinomial probit model – Bayesian estimation]," MPRA Paper 37150, University Library of Munich, Germany.
- Mohamed Lachaab & Asim Ansari & Kamel Jedidi & Abdelwahed Trabelsi, 2006. "Modeling preference evolution in discrete choice models: A Bayesian state-space approach," Quantitative Marketing and Economics (QME), Springer, vol. 4(1), pages 57-81, March.
- William Greene, 2001.
"Fixed and Random Effects in Nonlinear Models,"
Working Papers
01-01, New York University, Leonard N. Stern School of Business, Department of Economics.
- Greene, W., 2001. "Fixed and Random Effects in Nonlinear Models," New York University, Leonard N. Stern School Finance Department Working Paper Seires 01-01, New York University, Leonard N. Stern School of Business-.
- Ricardo A. Daziano & Luis Miranda-Moreno & Shahram Heydari, 2013. "Computational Bayesian Statistics in Transportation Modeling: From Road Safety Analysis to Discrete Choice," Transport Reviews, Taylor & Francis Journals, vol. 33(5), pages 570-592, September.
- Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3697-3708. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.