IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.05221.html
   My bibliography  Save this paper

RUM-NN: A Neural Network Model Compatible with Random Utility Maximisation for Discrete Choice Setups

Author

Listed:
  • Niousha Bagheri
  • Milad Ghasri
  • Michael Barlow

Abstract

This paper introduces a framework for capturing stochasticity of choice probabilities in neural networks, derived from and fully consistent with the Random Utility Maximization (RUM) theory, referred to as RUM-NN. Neural network models show remarkable performance compared with statistical models; however, they are often criticized for their lack of transparency and interoperability. The proposed RUM-NN is introduced in both linear and nonlinear structures. The linear RUM-NN retains the interpretability and identifiability of traditional econometric discrete choice models while using neural network-based estimation techniques. The nonlinear RUM-NN extends the model's flexibility and predictive capabilities to capture nonlinear relationships between variables within utility functions. Additionally, the RUM-NN allows for the implementation of various parametric distributions for unobserved error components in the utility function and captures correlations among error terms. The performance of RUM-NN in parameter recovery and prediction accuracy is rigorously evaluated using synthetic datasets through Monte Carlo experiments. Additionally, RUM-NN is evaluated on the Swissmetro and the London Passenger Mode Choice (LPMC) datasets with different sets of distribution assumptions for the error component. The results demonstrate that RUM-NN under a linear utility structure and IID Gumbel error terms can replicate the performance of the Multinomial Logit (MNL) model, but relaxing those constraints leads to superior performance for both Swissmetro and LPMC datasets. By introducing a novel estimation approach aligned with statistical theories, this study empowers econometricians to harness the advantages of neural network models.

Suggested Citation

  • Niousha Bagheri & Milad Ghasri & Michael Barlow, 2025. "RUM-NN: A Neural Network Model Compatible with Random Utility Maximisation for Discrete Choice Setups," Papers 2501.05221, arXiv.org.
  • Handle: RePEc:arx:papers:2501.05221
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.05221
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar & Rivas, Ana, 2008. "Closed form expressions for choice probabilities in the Weibull case," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 373-380, May.
    2. Dansie, B. R., 1985. "Parameter estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 19(6), pages 526-528, December.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, November.
    4. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    5. Lhéritier, Alix & Bocamazo, Michael & Delahaye, Thierry & Acuna-Agost, Rodrigo, 2019. "Airline itinerary choice modeling using machine learning," Journal of choice modelling, Elsevier, vol. 31(C), pages 198-209.
    6. Wang, Shenhao & Mo, Baichuan & Zhao, Jinhua, 2021. "Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 333-358.
    7. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    8. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    9. Kamal, Kimia & Farooq, Bilal, 2024. "Ordinal-ResLogit: Interpretable deep residual neural networks for ordered choices," Journal of choice modelling, Elsevier, vol. 50(C).
    10. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    11. Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
    12. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    13. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan, 2005. "A multidimensional mixed ordered-response model for analyzing weekend activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 255-278, March.
    14. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    15. del Castillo, J.M., 2016. "A class of RUM choice models that includes the model in which the utility has logistic distributed errors," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 1-20.
    16. Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.
    17. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    18. Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    2. Ali, Azam & Kalatian, Arash & Choudhury, Charisma F., 2023. "Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    3. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    4. Rico Krueger & Michel Bierlaire & Thomas Gasos & Prateek Bansal, 2020. "Robust discrete choice models with t-distributed kernel errors," Papers 2009.06383, arXiv.org, revised Dec 2022.
    5. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    6. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    7. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    8. Nakayama, Shoichiro & Chikaraishi, Makoto, 2015. "Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 672-685.
    9. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    10. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    11. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    12. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    13. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    14. Kim, Eui-Jin & Bansal, Prateek, 2024. "A new flexible and partially monotonic discrete choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    15. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    16. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    17. Mattsson, Lars-Göran & Weibull, Jörgen W. & Lindberg, Per Olov, 2014. "Extreme values, invariance and choice probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 81-95.
    18. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    19. Aydın Alptekinoğlu & John H. Semple, 2021. "Heteroscedastic Exponomial Choice," Operations Research, INFORMS, vol. 69(3), pages 841-858, May.
    20. Youssef M. Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2021. "Discrete Choice Analysis with Machine Learning Capabilities," Papers 2101.10261, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.05221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.