Scalable Bayesian estimation in the multinomial probit model
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Ruben Loaiza-Maya & Didier Nibbering, 2020. "Scalable Bayesian Estimation in the Multinomial Probit Model," Monash Econometrics and Business Statistics Working Papers 25/20, Monash University, Department of Econometrics and Business Statistics.
References listed on IDEAS
- Geweke, John & Zhou, Guofu, 1996.
"Measuring the Pricing Error of the Arbitrage Pricing Theory,"
The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
- John Geweke & Guofu Zhou, 1995. "Measuring the pricing error of the arbitrage pricing theory," Staff Report 189, Federal Reserve Bank of Minneapolis.
- John Geweke & Guofu Zhou, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," CEMA Working Papers 276, China Economics and Management Academy, Central University of Finance and Economics.
- Geweke, John & Keane, Michael P & Runkle, David, 1994.
"Alternative Computational Approaches to Inference in the Multinomial Probit Model,"
The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
- John Geweke & Michael P. Keane & David E. Runkle, 1994. "Alternative computational approaches to inference in the multinomial probit model," Staff Report 170, Federal Reserve Bank of Minneapolis.
- McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
- Greg M. Allenby & Peter E. Rossi, 1991. "Quality Perceptions and Asymmetric Switching Between Brands," Marketing Science, INFORMS, vol. 10(3), pages 185-204.
- Hausman, Jerry & McFadden, Daniel, 1984.
"Specification Tests for the Multinomial Logit Model,"
Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
- D. McFadden & J. Hausman, 1981. "Specification Tests for the Multinominal Logit Model," Working papers 292, Massachusetts Institute of Technology (MIT), Department of Economics.
- Imai, Kosuke & Van Dyk, David A., 2005. "MNP: R Package for Fitting the Multinomial Probit Model," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i03).
- McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
- Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
- Chintagunta, Pradeep K & Prasad, Alok R, 1998. "An Empirical Investigation of the "Dynamic McFadden" Model of Purchase Timing and Brand Choice: Implications for Market Structure," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 2-12, January.
- Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
- Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
- Lane F. Burgette & Erik V. Nordheim, 2012. "The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 404-410, February.
- Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
- Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Patrick Ding & Guido Imbens & Zhaonan Qu & Yinyu Ye, 2024. "Computationally Efficient Estimation of Large Probit Models," Papers 2407.09371, arXiv.org, revised Sep 2024.
- Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
- Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.
- Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
- Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
- Raja Chakir & Olivier Parent, 2009.
"Determinants of land use changes: A spatial multinomial probit approach,"
Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
- Olivier Parent & Raja Chakir, 2008. "Determinants of land use changes: a spatial multinomial probit approach," University of Cincinnati, Economics Working Papers Series 2008-06, University of Cincinnati, Department of Economics.
- Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
- Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
- Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
- Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
- Park, Sang Soo & Lee, Chung-Ki, 2011. "베이지안 추정법을 이용한 주택선택의 다항프로빗 모형 분석 [Analysis of housing choice using multinomial probit model – Bayesian estimation]," MPRA Paper 37150, University Library of Munich, Germany.
- Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.
- Sumeetpal S. Singh & Nicolas Chopin & Nick Whiteley, 2010. "Bayesian Learning of Noisy Markov Decision Processes," Working Papers 2010-36, Center for Research in Economics and Statistics.
- Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
- Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
- Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
- Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.
- John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006.
"Econometrics: A Bird’s Eye View,"
CESifo Working Paper Series
1870, CESifo.
- Geweke, John F. & Horowitz, Joel L. & Pesaran, M. Hashem, 2006. "Econometrics: A Bird's Eye View," IZA Discussion Papers 2458, Institute of Labor Economics (IZA).
- Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Susan Athey & Guido W. Imbens, 2007.
"Discrete Choice Models With Multiple Unobserved Choice Characteristics,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
- Susan Athey & Guido Imbens, 2006. "Discrete Choice Models with Multiple Unobserved Choice Characteristics," Levine's Bibliography 122247000000001040, UCLA Department of Economics.
- Laurent GOMEZ, 2024. "La mobilité quotidienne des immigrés en France," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 59, pages 79-107.
More about this item
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
- C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
NEP fields
This paper has been announced in the following NEP Reports:- NEP-DCM-2020-08-31 (Discrete Choice Models)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.13247. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.