IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i10p178-d651452.html
   My bibliography  Save this article

Concordance Probability for Insurance Pricing Models

Author

Listed:
  • Jolien Ponnet

    (Department of Mathematics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium)

  • Robin Van Oirbeek

    (Data Office, Allianz Benelux, 1000 Brussels, Belgium
    Department of Mathematics, University of Antwerp, 2020 Antwerp, Belgium)

  • Tim Verdonck

    (Department of Mathematics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
    Department of Mathematics, University of Antwerp, 2020 Antwerp, Belgium)

Abstract

The concordance probability, also called the C-index, is a popular measure to capture the discriminatory ability of a predictive model. In this article, the definition of this measure is adapted to the specific needs of the frequency and severity model, typically used during the technical pricing of a non-life insurance product. For the frequency model, the need of two different groups is tackled by defining three new types of the concordance probability. Secondly, these adapted definitions deal with the concept of exposure, which is the duration of a policy or insurance contract. Frequency data typically have a large sample size and therefore we present two fast and accurate estimation procedures for big data. Their good performance is illustrated on two real-life datasets. Upon these examples, we also estimate the concordance probability developed for severity models.

Suggested Citation

  • Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2021. "Concordance Probability for Insurance Pricing Models," Risks, MDPI, vol. 9(10), pages 1-26, October.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:10:p:178-:d:651452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/10/178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/10/178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 128-139.
    2. Legrand, Catherine, 2021. "Advanced Survival Models," LIDAM Reprints ISBA 2021015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Discussion Papers ISBA 2019006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Reprints ISBA 2019046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    2. Denuit, Michel & Trufin, Julien, 2022. "Autocalibration by balance correction in nonlife insurance pricing," LIDAM Discussion Papers ISBA 2022041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    5. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Willame, Gireg & Trufin, Julien & Denuit, Michel, 2023. "Boosted Poisson regression trees: A guide to the BT package in R," LIDAM Discussion Papers ISBA 2023008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Denuit, Michel & Trufin, Julien, 2021. "Lorenz curve, Gini coefficient, and Tweedie dominance for autocalibrated predictors," LIDAM Discussion Papers ISBA 2021036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 485-497.
    9. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 163-172.
    10. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    11. Denuit, Michel & Charpentier, Arthur & Trufin, Julien, 2021. "Autocalibration and Tweedie-dominance for insurance pricing with machine learning," LIDAM Discussion Papers ISBA 2021013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Michel Denuit & Arthur Charpentier & Julien Trufin, 2021. "Autocalibration and Tweedie-dominance for Insurance Pricing with Machine Learning," Papers 2103.03635, arXiv.org, revised Jul 2021.
    13. Denuit, Michel & Trufin, Julien & Verdebout, Thomas, 2021. "Testing for more positive expectation dependence with application to model comparison," LIDAM Discussion Papers ISBA 2021021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Denuit, Michel & Trufin, Julien, 2022. "Model selection with Pearson’s correlation, concentration and Lorenz curves under autocalibration," LIDAM Discussion Papers ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Denuit, Michel & Huyghe, Julie & Trufin, Julien & Verdebout, Thomas, 2024. "Testing for auto-calibration with Lorenz and Concentration curves," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 130-139.
    16. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    17. Martin Branda, 2014. "Optimization Approaches to Multiplicative Tariff of Rates Estimation in Non-Life Insurance," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(05), pages 1-17.
    18. Adam Braima S. Mastor & Abdulaziz S. Alghamdi & Oscar Ngesa & Joseph Mung’atu & Christophe Chesneau & Ahmed Z. Afify, 2023. "The Extended Exponential-Weibull Accelerated Failure Time Model with Application to Sudan COVID-19 Data," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
    19. Catalina Bolancé & Raluca Vernic, 2017. "“Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution”," IREA Working Papers 201718, University of Barcelona, Research Institute of Applied Economics, revised Oct 2017.
    20. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:10:p:178-:d:651452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.