IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/331857.html
   My bibliography  Save this paper

Central American - European Union Association Agreement: Assessment using General and Partial Equilibrium

Author

Listed:
  • Lima, José E. Durán
  • Ludeña, Carlos
  • Alvarez, Mariano
  • de Miguel, Carlos J.

Abstract

Five economies of Central America —Costa Rica, El Salvador, Guatemala, Honduras and Nicaragua— are negotiating an Association Agreement with the European Union (EU). This process is an important part of their trade policy and implies significant changes in the relationship between both regions, not only in trade-related issues and in investment and services arrangements, but also in the existing political dialog and cooperation for development. Using the General Equilibrium (GTAP model and database) and Partial Equilibrium methodology, this paper presents an assessment of the socioeconomic and environmental impacts for Central America and the European Union coming from this Association Agreement. In order to develop this work we have considered the trade sensitivities for Central America and for the European Union. Three scenarios were established: a) full liberalization; b) liberalization with the exclusion of all sensitive products in both sides; and c) liberalization considering only “fruits and vegetables” as sensitive by the European Union. Being impossible to obtain specific results for El Salvador and Honduras with the CGE methodology -they are not single regions in the GTAP database-, the study also incorporates a complementary Partial Equilibrium analysis for all Central American countries using information on their bilateral trade flows with the EU. Results show that, in general terms, a full liberalization for all tariff-lines would promote the expansion of exports of all countries signing the agreement, especially those for agricultural products and light manufactures. Additionally, it would improve welfare for all Central American countries due to the improvement of their terms of trade by raising export prices of agricultural products, in particular fruits and vegetables, other crops and some manufactures. The scenario excluding sensitive products shows the worst results, with a small growth in trade (1.2%) and welfare loses explained by terms of terms worsening and efficiency loses in the use of resources. In the other hand, when the European Union excludes only fruits and vegetables, results for trade and product remain positive, but with smaller figures. Partial Equilibrium simulations give additional information about the kind of products most positive affected trade liberalization, which are basically agricultural and agroindustrial products (for example, in the case of Costa Rica, they include bananas, pineapples, lemons, oranges, nuts and shrimps, among others). The simulations also support the preliminary intuition that the biggest profits come from a general cut of all current protection levels. Regarding welfare, similar as in the general equilibrium, Costa Rica leads the improvements due to its condition of principal partner of the European Union within the Central America group.

Suggested Citation

  • Lima, José E. Durán & Ludeña, Carlos & Alvarez, Mariano & de Miguel, Carlos J., 2009. "Central American - European Union Association Agreement: Assessment using General and Partial Equilibrium," Conference papers 331857, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:331857
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/331857/files/4601.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Golub, Alla & Hertel, Thomas & Sohngen, Brent, 2008. "Land Use Modeling in Recursively-Dynamic GTAP Framework," GTAP Working Papers 2609, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    3. Seale, James L., Jr. & Regmi, Anita & Bernstein, Jason, 2003. "International Evidence On Food Consumption Patterns," Technical Bulletins 33580, United States Department of Agriculture, Economic Research Service.
    4. Decreux, Yvan & Valin, Hugo, 2007. "MIRAGE, Updated Version of the Model for Trade Policy Analysis: Focus on Agriculture and Dynamics," Working Papers 7284, TRADEAG - Agricultural Trade Agreements.
    5. Seale, James L., Jr. & Regmi, Anita & Bernstein, Jason, 2003. "International Evidence On Food Consumption Patterns," Technical Bulletins 33580, United States Department of Agriculture, Economic Research Service.
    6. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    7. Golub, Alla & Hertel, Thomas & Sohngen, Brent, 2008. "Land Use Modeling in Recursively-Dynamic GTAP Framework," GTAP Working Papers 2609, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    8. Gurgel Angelo & Reilly John M & Paltsev Sergey, 2007. "Potential Land Use Implications of a Global Biofuels Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-36, December.
    9. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo Valin & Betina Dimaranan & Antoine Bouet, 2009. "Biofuels in the world markets: A Computable General Equilibrium assessment of environmental costs related to land use changes," Working Papers hal-03550775, HAL.
    2. Antoine BOUËT & HUGO VALIN & Betina DIMARANAN, 2009. "Biofuels in the world markets: A Computable General Equilibrium assessment of environmental costs related to land use changes," Working Papers 6, CATT - UPPA - Université de Pau et des Pays de l'Adour, revised Nov 2009.
    3. Hertel, Thomas W., 2010. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 92639, Agricultural and Applied Economics Association.
    4. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    5. Bouët, Antoine & Dimaranan, Betina V. & Valin, Hugo, 2010. "Modeling the global trade and environmental impacts of biofuel policies," IFPRI discussion papers 1018, International Food Policy Research Institute (IFPRI).
    6. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    7. Valin, Hugo & Havlik, Petr & Mosnier, Aline & Obersteiner, Michael, 2012. "Impacts of Alternative Climate Change Mitigation Policies on Food Consumption under various Diet Scenarios," Conference papers 332253, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    9. Thierry Brunelle & Patrice Dumas, 2012. "Can Numerical Models Estimate Indirect Land-use Change?," Working Papers 2012.65, Fondazione Eni Enrico Mattei.
    10. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    11. Lapan, Harvey E. & Moschini, GianCarlo, 2009. "Biofuels policies and welfare: is the stick of mandates better than the carrot of subsidies?," ISU General Staff Papers 200906100700001138, Iowa State University, Department of Economics.
    12. François Joseph Cabral & Fatou Cissé & Abdoulaye Diagne & Msangi Siwa, 2017. "Global Biofuel Production and Poverty in Senegal," Economics Bulletin, AccessEcon, vol. 37(3), pages 1435-1449.
    13. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    14. Jingbo Cui & Harvey Lapan & GianCarlo Moschini & Joseph Cooper, 2011. "Welfare Impacts of Alternative Biofuel and Energy Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(5), pages 1235-1256.
    15. Valin, Hugo & Havlik, Petr & Mosnier, Aline & Obersteiner, Michael, 2010. "Climate Change Mitigation And Future Food Consumption Patterns," 115th Joint EAAE/AAEA Seminar, September 15-17, 2010, Freising-Weihenstephan, Germany 116392, European Association of Agricultural Economists.
    16. Wydra, Sven, 2015. "Challenges for technology diffusion policy to achieve socio-economic goals," Technology in Society, Elsevier, vol. 41(C), pages 76-90.
    17. Chakravorty, Ujjayant & Hubert, Marie-Hélène & Moreaux, Michel & Nøstbakken, Linda, 2010. "Will Biofuel Mandates Raise Food Prices?," TSE Working Papers 10-212, Toulouse School of Economics (TSE).
    18. Kamel Louhichi & Hugo Valin, 2012. "Impact of EU biofuel policies on the French arable sector: A micro-level analysis using global market and farm-based supply models," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(3), pages 233-272.
    19. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    20. Ehsanreza Sajedinia & Wallace E. Tyner, 2021. "Use of General Equilibrium Models in Evaluating Biofuels Policies," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 14, pages 437-465, World Scientific Publishing Co. Pte. Ltd..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:331857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.