IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v30y2010i8p1268-1276.html
   My bibliography  Save this article

Extension of the Application of Conway‐Maxwell‐Poisson Models: Analyzing Traffic Crash Data Exhibiting Underdispersion

Author

Listed:
  • Dominique Lord
  • Srinivas Reddy Geedipally
  • Seth D. Guikema

Abstract

The objective of this article is to evaluate the performance of the COM‐Poisson GLM for analyzing crash data exhibiting underdispersion (when conditional on the mean). The COM‐Poisson distribution, originally developed in 1962, has recently been reintroduced by statisticians for analyzing count data subjected to either over‐ or underdispersion. Over the last year, the COM‐Poisson GLM has been evaluated in the context of crash data analysis and it has been shown that the model performs as well as the Poisson‐gamma model for crash data exhibiting overdispersion. To accomplish the objective of this study, several COM‐Poisson models were estimated using crash data collected at 162 railway‐highway crossings in South Korea between 1998 and 2002. This data set has been shown to exhibit underdispersion when models linking crash data to various explanatory variables are estimated. The modeling results were compared to those produced from the Poisson and gamma probability models documented in a previous published study. The results of this research show that the COM‐Poisson GLM can handle crash data when the modeling output shows signs of underdispersion. Finally, they also show that the model proposed in this study provides better statistical performance than the gamma probability and the traditional Poisson models, at least for this data set.

Suggested Citation

  • Dominique Lord & Srinivas Reddy Geedipally & Seth D. Guikema, 2010. "Extension of the Application of Conway‐Maxwell‐Poisson Models: Analyzing Traffic Crash Data Exhibiting Underdispersion," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1268-1276, August.
  • Handle: RePEc:wly:riskan:v:30:y:2010:i:8:p:1268-1276
    DOI: 10.1111/j.1539-6924.2010.01417.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2010.01417.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2010.01417.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seth D. Guikema & Jeremy P. Goffelt, 2008. "A Flexible Count Data Regression Model for Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 213-223, February.
    2. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    3. Boatwright, Peter & Borle, Sharad & Kadane, Joseph B., 2003. "A Model of the Joint Distribution of Purchase Quantity and Timing," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 564-572, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuvraj Sunecher & Naushad Mamode Khan & Vandna Jowaheer & Marcelo Bourguignon & Mohammad Arashi, 2019. "A Primer on a Flexible Bivariate Time Series Model for Analyzing First and Second Half Football Goal Scores: The Case of the Big 3 London Rivals in the EPL," Annals of Data Science, Springer, vol. 6(3), pages 531-548, September.
    2. S. Hadi Khazraee & Antonio Jose Sáez‐Castillo & Srinivas Reddy Geedipally & Dominique Lord, 2015. "Application of the Hyper‐Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 919-930, May.
    3. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    4. Royce A. Francis & Srinivas Reddy Geedipally & Seth D. Guikema & Soma Sekhar Dhavala & Dominique Lord & Sarah LaRocca, 2012. "Characterizing the Performance of the Conway‐Maxwell Poisson Generalized Linear Model," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 167-183, January.
    5. Jinxian Weng & Qiang Meng & David Z. W. Wang, 2013. "Tree‐Based Logistic Regression Approach for Work Zone Casualty Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 493-504, March.
    6. Meena Badade & T. V. Ramanathan, 2022. "Probabilistic Frontier Regression Models for Count Type Output Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 235-260, September.
    7. Sunecher Yuvraj & Mamode Khan Naushad & Jowaheer Vandna, 2019. "Modelling with Dispersed Bivariate Moving Average Processes," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-19, January.
    8. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    9. Zeng, Qiang & Wen, Huiying & Huang, Helai & Wang, Jie & Lee, Jinwoo, 2020. "Analysis of crash frequency using a Bayesian underreporting count model with spatial correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Royce A. Francis & Srinivas Reddy Geedipally & Seth D. Guikema & Soma Sekhar Dhavala & Dominique Lord & Sarah LaRocca, 2012. "Characterizing the Performance of the Conway‐Maxwell Poisson Generalized Linear Model," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 167-183, January.
    2. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    3. Robert E. Gaunt & Satish Iyengar & Adri B. Olde Daalhuis & Burcin Simsek, 2019. "An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 163-180, February.
    4. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    5. Zhou, Can & Jiao, Yan & Browder, Joan, 2019. "K-aggregated transformation of discrete distributions improves modeling count data with excess ones," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
    6. Pattiz, Brian David, 2009. "Count regression models for recreation demand: an application to Clear Lake," ISU General Staff Papers 200901010800002092, Iowa State University, Department of Economics.
    7. Sharad Borle & Peter Boatwright & Joseph B. Kadane & Joseph C. Nunes & Shmueli Galit, 2005. "The Effect of Product Assortment Changes on Customer Retention," Marketing Science, INFORMS, vol. 24(4), pages 616-622, July.
    8. Siddharth Singh & Sharad Borle & Dipak Jain, 2009. "A generalized framework for estimating customer lifetime value when customer lifetimes are not observed," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 181-205, June.
    9. Sharad Borle & Utpal M. Dholakia & Siddharth S. Singh & Robert A. Westbrook, 2007. "The Impact of Survey Participation on Subsequent Customer Behavior: An Empirical Investigation," Marketing Science, INFORMS, vol. 26(5), pages 711-726, 09-10.
    10. Kirthi Kalyanam & Sharad Borle & Peter Boatwright, 2007. "Deconstructing Each Item's Category Contribution," Marketing Science, INFORMS, vol. 26(3), pages 327-341, 05-06.
    11. S. Hadi Khazraee & Antonio Jose Sáez‐Castillo & Srinivas Reddy Geedipally & Dominique Lord, 2015. "Application of the Hyper‐Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 919-930, May.
    12. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    13. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
    14. Mamode Khan Naushad & Rumjaun Wasseem & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Computing with bivariate COM-Poisson model under different copulas," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 131-146, June.
    15. Xun-Jian Li & Guo-Liang Tian & Mingqian Zhang & George To Sum Ho & Shuang Li, 2023. "Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    16. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    17. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    18. Can Zhou & Yan Jiao & Joan Browder, 2019. "How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    19. Joseph B. Kadane & Ramayya Krishnan & Galit Shmueli, 2006. "A Data Disclosure Policy for Count Data Based on the COM-Poisson Distribution," Management Science, INFORMS, vol. 52(10), pages 1610-1617, October.
    20. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:30:y:2010:i:8:p:1268-1276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.