IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v4y2017i1d10.1186_s40488-017-0077-0.html
   My bibliography  Save this article

A flexible distribution class for count data

Author

Listed:
  • Kimberly F. Sellers

    (Georgetown University)

  • Andrew W. Swift

    (University of Nebraska - Omaha)

  • Kimberly S. Weems

    (North Carolina Central University)

Abstract

The Poisson, geometric and Bernoulli distributions are special cases of a flexible count distribution, namely the Conway-Maxwell-Poisson (CMP) distribution – a two-parameter generalization of the Poisson distribution that can accommodate data over- or under-dispersion. This work further generalizes the ideas of the CMP distribution by considering sums of CMP random variables to establish a flexible class of distributions that encompasses the Poisson, negative binomial, and binomial distributions as special cases. This sum-of-Conway-Maxwell-Poissons (sCMP) class captures the CMP and its special cases, as well as the classical negative binomial and binomial distributions. Through simulated and real data examples, we demonstrate this model’s flexibility, encompassing several classical distributions as well as other count data distributions containing significant data dispersion.

Suggested Citation

  • Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
  • Handle: RePEc:spr:jstada:v:4:y:2017:i:1:d:10.1186_s40488-017-0077-0
    DOI: 10.1186/s40488-017-0077-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-017-0077-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-017-0077-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sharad Borle & Utpal M. Dholakia & Siddharth S. Singh & Robert A. Westbrook, 2007. "The Impact of Survey Participation on Subsequent Customer Behavior: An Empirical Investigation," Marketing Science, INFORMS, vol. 26(5), pages 711-726, 09-10.
    2. Boatwright, Peter & Borle, Sharad & Kadane, Joseph B., 2003. "A Model of the Joint Distribution of Purchase Quantity and Timing," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 564-572, January.
    3. Sellers, Kimberly F. & Morris, Darcy Steeg & Balakrishnan, Narayanaswamy, 2016. "Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties, and inference," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 152-168.
    4. Sellers, Kimberly F. & Raim, Andrew, 2016. "A flexible zero-inflated model to address data dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 68-80.
    5. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    6. B. J. R. Bailey, 1990. "A Model for Function Word Counts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(1), pages 107-114, March.
    7. Li Zhu & Kimberly F. Sellers & Darcy Steeg Morris & Galit Shmueli, 2017. "Bridging the Gap: A Generalized Stochastic Process for Count Data," The American Statistician, Taylor & Francis Journals, vol. 71(1), pages 71-80, January.
    8. Joseph B. Kadane & Ramayya Krishnan & Galit Shmueli, 2006. "A Data Disclosure Policy for Count Data Based on the COM-Poisson Distribution," Management Science, INFORMS, vol. 52(10), pages 1610-1617, October.
    9. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    2. Bedbur, S. & Kamps, U., 2023. "Uniformly most powerful unbiased tests for the dispersion parameter of the Conway–Maxwell–Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 196(C).
    3. Seng Huat Ong & Shin Zhu Sim & Shuangzhe Liu & Hari M. Srivastava, 2023. "A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data," Stats, MDPI, vol. 6(3), pages 1-14, September.
    4. Morris, Darcy Steeg & Raim, Andrew M. & Sellers, Kimberly F., 2020. "A Conway–Maxwell-multinomial distribution for flexible modeling of clustered categorical data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    5. Kimberly F. Sellers & Ali Arab & Sean Melville & Fanyu Cui, 2021. "A flexible univariate moving average time-series model for dispersed count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamode Khan Naushad & Rumjaun Wasseem & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Computing with bivariate COM-Poisson model under different copulas," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 131-146, June.
    2. Kimberly F. Sellers & Ali Arab & Sean Melville & Fanyu Cui, 2021. "A flexible univariate moving average time-series model for dispersed count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-12, December.
    3. Siddharth Singh & Sharad Borle & Dipak Jain, 2009. "A generalized framework for estimating customer lifetime value when customer lifetimes are not observed," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 181-205, June.
    4. Morris, Darcy Steeg & Raim, Andrew M. & Sellers, Kimberly F., 2020. "A Conway–Maxwell-multinomial distribution for flexible modeling of clustered categorical data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    5. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
    6. Robert E. Gaunt & Satish Iyengar & Adri B. Olde Daalhuis & Burcin Simsek, 2019. "An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 163-180, February.
    7. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    8. Pattiz, Brian David, 2009. "Count regression models for recreation demand: an application to Clear Lake," ISU General Staff Papers 200901010800002092, Iowa State University, Department of Economics.
    9. Rodrigues, Josemar & Bazán, Jorge L. & Suzuki, Adriano K. & Balakrishnan, Narayanaswamy, 2016. "The Bayesian restricted Conway–Maxwell-Binomial model to control dispersion in count data," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 281-288.
    10. Sharad Borle & Peter Boatwright & Joseph B. Kadane & Joseph C. Nunes & Shmueli Galit, 2005. "The Effect of Product Assortment Changes on Customer Retention," Marketing Science, INFORMS, vol. 24(4), pages 616-622, July.
    11. Sharad Borle & Utpal M. Dholakia & Siddharth S. Singh & Robert A. Westbrook, 2007. "The Impact of Survey Participation on Subsequent Customer Behavior: An Empirical Investigation," Marketing Science, INFORMS, vol. 26(5), pages 711-726, 09-10.
    12. Kirthi Kalyanam & Sharad Borle & Peter Boatwright, 2007. "Deconstructing Each Item's Category Contribution," Marketing Science, INFORMS, vol. 26(3), pages 327-341, 05-06.
    13. Dominique Lord & Srinivas Reddy Geedipally & Seth D. Guikema, 2010. "Extension of the Application of Conway‐Maxwell‐Poisson Models: Analyzing Traffic Crash Data Exhibiting Underdispersion," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1268-1276, August.
    14. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    15. Royce A. Francis & Srinivas Reddy Geedipally & Seth D. Guikema & Soma Sekhar Dhavala & Dominique Lord & Sarah LaRocca, 2012. "Characterizing the Performance of the Conway‐Maxwell Poisson Generalized Linear Model," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 167-183, January.
    16. Rufin Bidounga & Evrand Giles Brunel Mandangui Maloumbi & Réolie Foxie Mizélé Kitoti & Dominique Mizère, 2020. "The New Bivariate Conway-Maxwell-Poisson Distribution Obtained by the Crossing Method," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-1, November.
    17. Seng Huat Ong & Shin Zhu Sim & Shuangzhe Liu & Hari M. Srivastava, 2023. "A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data," Stats, MDPI, vol. 6(3), pages 1-14, September.
    18. Meena Badade & T. V. Ramanathan, 2022. "Probabilistic Frontier Regression Models for Count Type Output Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 235-260, September.
    19. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    20. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:4:y:2017:i:1:d:10.1186_s40488-017-0077-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.