IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v28y2008i1p213-223.html
   My bibliography  Save this article

A Flexible Count Data Regression Model for Risk Analysis

Author

Listed:
  • Seth D. Guikema
  • Jeremy P. Goffelt

Abstract

In many cases, risk and reliability analyses involve estimating the probabilities of discrete events such as hardware failures and occurrences of disease or death. There is often additional information in the form of explanatory variables that can be used to help estimate the likelihood of different numbers of events in the future through the use of an appropriate regression model, such as a generalized linear model. However, existing generalized linear models (GLM) are limited in their ability to handle the types of variance structures often encountered in using count data in risk and reliability analysis. In particular, standard models cannot handle both underdispersed data (variance less than the mean) and overdispersed data (variance greater than the mean) in a single coherent modeling framework. This article presents a new GLM based on a reformulation of the Conway‐Maxwell Poisson (COM) distribution that is useful for both underdispersed and overdispersed count data and demonstrates this model by applying it to the assessment of electric power system reliability. The results show that the proposed COM GLM can provide as good of fits to data as the commonly used existing models for overdispered data sets while outperforming these commonly used models for underdispersed data sets.

Suggested Citation

  • Seth D. Guikema & Jeremy P. Goffelt, 2008. "A Flexible Count Data Regression Model for Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 213-223, February.
  • Handle: RePEc:wly:riskan:v:28:y:2008:i:1:p:213-223
    DOI: 10.1111/j.1539-6924.2008.01014.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2008.01014.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2008.01014.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guikema, Seth D., 2007. "Formulating informative, data-based priors for failure probability estimation in reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 490-502.
    2. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    3. Englin, Jeffrey & Shonkwiler, J S, 1995. "Estimating Social Welfare Using Count Data Models: An Application to Long-Run Recreation Demand under Conditions of Endogenous Stratification and Truncation," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 104-112, February.
    4. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    2. S. Hadi Khazraee & Antonio Jose Sáez‐Castillo & Srinivas Reddy Geedipally & Dominique Lord, 2015. "Application of the Hyper‐Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 919-930, May.
    3. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    4. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    5. Royce A. Francis & Srinivas Reddy Geedipally & Seth D. Guikema & Soma Sekhar Dhavala & Dominique Lord & Sarah LaRocca, 2012. "Characterizing the Performance of the Conway‐Maxwell Poisson Generalized Linear Model," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 167-183, January.
    6. Zhou, Can & Jiao, Yan & Browder, Joan, 2019. "K-aggregated transformation of discrete distributions improves modeling count data with excess ones," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
    7. Sim Shin Zhu & Gupta Ramesh C. & Ong Seng Huat, 2018. "Zero-inflated Conway-Maxwell Poisson Distribution to Analyze Discrete Data," The International Journal of Biostatistics, De Gruyter, vol. 14(1), pages 1-12, May.
    8. Shital A. Thekdi & James H. Lambert, 2012. "Decision Analysis and Risk Models for Land Development Affecting Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1253-1269, July.
    9. Somayeh Ghorbani Gholiabad & Abbas Moghimbeigi & Javad Faradmal, 2021. "Three-level zero-inflated Conway–Maxwell–Poisson regression model for analyzing dispersed clustered count data with extra zeros," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 415-439, November.
    10. Boris Forthmann & Philipp Doebler, 2021. "Reliability of researcher capacity estimates and count data dispersion: a comparison of Poisson, negative binomial, and Conway-Maxwell-Poisson models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3337-3354, April.
    11. Dominique Lord & Srinivas Reddy Geedipally & Seth D. Guikema, 2010. "Extension of the Application of Conway‐Maxwell‐Poisson Models: Analyzing Traffic Crash Data Exhibiting Underdispersion," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1268-1276, August.
    12. Xun-Jian Li & Guo-Liang Tian & Mingqian Zhang & George To Sum Ho & Shuang Li, 2023. "Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms," Mathematics, MDPI, vol. 11(6), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egan, Kevin & Herriges, Joseph, 2006. "Multivariate count data regression models with individual panel data from an on-site sample," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 567-581, September.
    2. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    3. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    4. Sarker, Rakhal & Surry, Yves R., 2003. "The Fast Decay Process In Recreational Demand Activities And The Use Of Alternative Count Data Models," Working Papers 34147, University of Guelph, Department of Food, Agricultural and Resource Economics.
    5. Simões, Paula & Barata, Eduardo & Cruz, Luís, 2013. "Joint estimation using revealed and stated preference data: An application using a national forest," Journal of Forest Economics, Elsevier, vol. 19(3), pages 249-266.
    6. Mahadev Bhat & Ramachandra Bhatta & Mohamed Shumais, 2014. "Sustainable funding policies for environmental protection: the case of Maldivian atolls," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(1), pages 45-67, January.
    7. Pattiz, Brian David, 2009. "Count regression models for recreation demand: an application to Clear Lake," ISU General Staff Papers 200901010800002092, Iowa State University, Department of Economics.
    8. Erik Wallentin, 2016. "Choice of the angler," Tourism Economics, , vol. 22(6), pages 1338-1351, December.
    9. Meisner, Craig & Wang, Hua & Laplante, Benoit, 2006. "Welfare measurement bias in household and on-site surveying of water-based recreation : an application to Lake Sevan, Armenia," Policy Research Working Paper Series 3932, The World Bank.
    10. Katsuhito Nohara, 2014. "Economic Valuation of the Damage to Tourism Benefits by Eastern Japan Great Earthquake Disaster," ERSA conference papers ersa14p1017, European Regional Science Association.
    11. Denise Desjardins & Georges Dionne & Yang Lu, 2023. "Hierarchical random‐effects model for the insurance pricing of vehicles belonging to a fleet," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 242-259, March.
    12. Beaumais, Olivier & Appéré, Gildas, 2010. "Recreational shellfish harvesting and health risks: A pseudo-panel approach combining revealed and stated preference data with correction for on-site sampling," Ecological Economics, Elsevier, vol. 69(12), pages 2315-2322, October.
    13. V. J. Cano Fernandez & G. Guirao Perez & M. C. Rodriguez Donate & M. E. Romero Rodriguez, 2009. "An analysis of count data models for the study of exclusivity in wine consumption," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1563-1574.
    14. Prayaga, Prabha, 2017. "Estimating the value of beach recreation for locals in the Great Barrier Reef Marine Park, Australia," Economic Analysis and Policy, Elsevier, vol. 53(C), pages 9-18.
    15. Bijwaard, G.E. & Franses, Ph.H.B.F., 2006. "Does rounding matter for payment efficiency?," Econometric Institute Research Papers EI 2006-43, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    17. Michael E. Cummings & Alan Gamlen, 2019. "Diaspora engagement institutions and venture investment activity in developing countries," Journal of International Business Policy, Palgrave Macmillan, vol. 2(4), pages 289-313, December.
    18. Lederman, Daniel & Saenz, Laura, 2005. "Innovation and development around the world, 1960-2000," Policy Research Working Paper Series 3774, The World Bank.
    19. Symeonidis, George, 2001. "Price Competition, Innovation and Profitability: Theory and UK Evidence," CEPR Discussion Papers 2816, C.E.P.R. Discussion Papers.
    20. Dennis, Allen & Shepherd, Ben, 2007. "Trade costs, barriers to entry, and export diversification in developing countries," Policy Research Working Paper Series 4368, The World Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:28:y:2008:i:1:p:213-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.