IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v71y2019i1d10.1007_s10463-017-0629-6.html
   My bibliography  Save this article

An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution

Author

Listed:
  • Robert E. Gaunt

    (The University of Manchester)

  • Satish Iyengar

    (University of Pittsburgh)

  • Adri B. Olde Daalhuis

    (The University of Edinburgh)

  • Burcin Simsek

    (University of Pittsburgh)

Abstract

The Conway–Maxwell–Poisson distribution is a two-parameter generalization of the Poisson distribution that can be used to model data that are under- or over-dispersed relative to the Poisson distribution. The normalizing constant $$Z(\lambda ,\nu )$$ Z ( λ , ν ) is given by an infinite series that in general has no closed form, although several papers have derived approximations for this sum. In this work, we start by using probabilistic argument to obtain the leading term in the asymptotic expansion of $$Z(\lambda ,\nu )$$ Z ( λ , ν ) in the limit $$\lambda \rightarrow \infty $$ λ → ∞ that holds for all $$\nu >0$$ ν > 0 . We then use an integral representation to obtain the entire asymptotic series and give explicit formulas for the first eight coefficients. We apply this asymptotic series to obtain approximations for the mean, variance, cumulants, skewness, excess kurtosis and raw moments of CMP random variables. Numerical results confirm that these correction terms yield more accurate estimates than those obtained using just the leading-order term.

Suggested Citation

  • Robert E. Gaunt & Satish Iyengar & Adri B. Olde Daalhuis & Burcin Simsek, 2019. "An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 163-180, February.
  • Handle: RePEc:spr:aistmt:v:71:y:2019:i:1:d:10.1007_s10463-017-0629-6
    DOI: 10.1007/s10463-017-0629-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-017-0629-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-017-0629-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    2. Saralees Nadarajah, 2009. "Useful moment and CDF formulations for the COM–Poisson distribution," Statistical Papers, Springer, vol. 50(3), pages 617-622, June.
    3. Boatwright, Peter & Borle, Sharad & Kadane, Joseph B., 2003. "A Model of the Joint Distribution of Purchase Quantity and Timing," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 564-572, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Alonso‐Pena & Irène Gijbels & Rosa M. Crujeiras, 2023. "Flexible joint modeling of mean and dispersion for the directional tuning of neuronal spike counts," Biometrics, The International Biometric Society, vol. 79(4), pages 3431-3444, December.
    2. Morris, Darcy Steeg & Raim, Andrew M. & Sellers, Kimberly F., 2020. "A Conway–Maxwell-multinomial distribution for flexible modeling of clustered categorical data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    3. Suryo Adi Rakhmawan & Tahir Mahmood & Nasir Abbas & Muhammad Riaz, 2024. "Unifying mortality forecasting model: an investigation of the COM–Poisson distribution in the GAS model for improved projections," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 800-826, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    2. Pattiz, Brian David, 2009. "Count regression models for recreation demand: an application to Clear Lake," ISU General Staff Papers 200901010800002092, Iowa State University, Department of Economics.
    3. Sharad Borle & Peter Boatwright & Joseph B. Kadane & Joseph C. Nunes & Shmueli Galit, 2005. "The Effect of Product Assortment Changes on Customer Retention," Marketing Science, INFORMS, vol. 24(4), pages 616-622, July.
    4. Siddharth Singh & Sharad Borle & Dipak Jain, 2009. "A generalized framework for estimating customer lifetime value when customer lifetimes are not observed," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 181-205, June.
    5. Pogány, Tibor K., 2016. "Integral form of the COM–Poisson renormalization constant," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 144-145.
    6. Sharad Borle & Utpal M. Dholakia & Siddharth S. Singh & Robert A. Westbrook, 2007. "The Impact of Survey Participation on Subsequent Customer Behavior: An Empirical Investigation," Marketing Science, INFORMS, vol. 26(5), pages 711-726, 09-10.
    7. Kirthi Kalyanam & Sharad Borle & Peter Boatwright, 2007. "Deconstructing Each Item's Category Contribution," Marketing Science, INFORMS, vol. 26(3), pages 327-341, 05-06.
    8. Dominique Lord & Srinivas Reddy Geedipally & Seth D. Guikema, 2010. "Extension of the Application of Conway‐Maxwell‐Poisson Models: Analyzing Traffic Crash Data Exhibiting Underdispersion," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1268-1276, August.
    9. Royce A. Francis & Srinivas Reddy Geedipally & Seth D. Guikema & Soma Sekhar Dhavala & Dominique Lord & Sarah LaRocca, 2012. "Characterizing the Performance of the Conway‐Maxwell Poisson Generalized Linear Model," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 167-183, January.
    10. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
    11. Mamode Khan Naushad & Rumjaun Wasseem & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Computing with bivariate COM-Poisson model under different copulas," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 131-146, June.
    12. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    13. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    14. Can Zhou & Yan Jiao & Joan Browder, 2019. "How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    15. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    16. Joseph B. Kadane & Ramayya Krishnan & Galit Shmueli, 2006. "A Data Disclosure Policy for Count Data Based on the COM-Poisson Distribution," Management Science, INFORMS, vol. 52(10), pages 1610-1617, October.
    17. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    18. Fernando Bonassi & Rafael Stern & Cláudia Peixoto & Sergio Wechsler, 2015. "Exchangeability and the law of maturity," Theory and Decision, Springer, vol. 78(4), pages 603-615, April.
    19. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    20. Dexter Cahoy & Elvira Di Nardo & Federico Polito, 2021. "Flexible models for overdispersed and underdispersed count data," Statistical Papers, Springer, vol. 62(6), pages 2969-2990, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:71:y:2019:i:1:d:10.1007_s10463-017-0629-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.