IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v54y2008i1p100-112.html
   My bibliography  Save this article

Customer Lifetime Value Measurement

Author

Listed:
  • Sharad Borle

    (Jesse H. Jones Graduate School of Management, Rice University, Houston, Texas 77005)

  • Siddharth S. Singh

    (Jesse H. Jones Graduate School of Management, Rice University, Houston, Texas 77005)

  • Dipak C. Jain

    (J. L. Kellogg School of Management, Northwestern University, Evanston, Illinois 60208)

Abstract

The measurement of customer lifetime value is important because it is used as a metric in evaluating decisions in the context of customer relationship management. For a firm, it is important to form some expectations as to the lifetime value of each customer at the time a customer starts doing business with the firm, and at each purchase by the customer. In this paper, we use a hierarchical Bayes approach to estimate the lifetime value of each customer at each purchase occasion by jointly modeling the purchase timing, purchase amount, and risk of defection from the firm for each customer. The data come from a membership-based direct marketing company where the times of each customer joining the membership and terminating it are known once these events happen. In addition, there is an uncertain relationship between customer lifetime and purchase behavior. Therefore, longer customer lifetime does not necessarily imply higher customer lifetime value. We compare the performance of our model with other models on a separate validation data set. The models compared are the extended NBD-Pareto model, the recency, frequency, and monetary value model, two models nested in our proposed model, and a heuristic model that takes the average customer lifetime, the average interpurchase time, and the average dollar purchase amount observed in our estimation sample and uses them to predict the present value of future customer revenues at each purchase occasion in our hold-out sample. The results show that our model performs better than all the other models compared both at predicting customer lifetime value and in targeting valuable customers. The results also show that longer interpurchase times are associated with larger purchase amounts and a greater risk of leaving the firm. Both male and female customers seem to have similar interpurchase time intervals and risk of leaving; however, female customers spend less compared with male customers.

Suggested Citation

  • Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
  • Handle: RePEc:inm:ormnsc:v:54:y:2008:i:1:p:100-112
    DOI: 10.1287/mnsc.1070.0746
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1070.0746
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1070.0746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    2. Sharad Borle & Utpal M. Dholakia & Siddharth S. Singh & Robert A. Westbrook, 2007. "The Impact of Survey Participation on Subsequent Customer Behavior: An Empirical Investigation," Marketing Science, INFORMS, vol. 26(5), pages 711-726, 09-10.
    3. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    4. Boatwright, Peter & Borle, Sharad & Kadane, Joseph B., 2003. "A Model of the Joint Distribution of Purchase Quantity and Timing," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 564-572, January.
    5. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    6. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    7. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    8. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    9. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddharth Singh & Sharad Borle & Dipak Jain, 2009. "A generalized framework for estimating customer lifetime value when customer lifetimes are not observed," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 181-205, June.
    2. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    3. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    4. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    5. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    6. Chao Wang & Ilaria Dalla Pozza, 2014. "The antecedents of customer lifetime duration and discounted expected transactions: Discrete-time based transaction data analysis," Working Papers 2014-203, Department of Research, Ipag Business School.
    7. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    8. Stephan Curiskis & Xiaojing Dong & Fan Jiang & Mark Scarr, 2023. "A novel approach to predicting customer lifetime value in B2B SaaS companies," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 587-601, December.
    9. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    10. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    11. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    12. Lydia Simon & Jost Adler, 2022. "Worth the effort? Comparison of different MCMC algorithms for estimating the Pareto/NBD model," Journal of Business Economics, Springer, vol. 92(4), pages 707-733, May.
    13. Mamode Khan Naushad & Rumjaun Wasseem & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Computing with bivariate COM-Poisson model under different copulas," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 131-146, June.
    14. Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
    15. Netzer, Oded & Lattin, James M. & Srinivasan, V. Seenu, 2007. "A Hidden Markov Model of Customer Relationship Dynamics," Research Papers 1904r, Stanford University, Graduate School of Business.
    16. Sharad Borle & Siddharth Singh & Dipak Jain & Ashutosh Patil, 2016. "Analyzing Recurrent Customer Purchases and Unobserved Defections: a Bayesian Data Augmentation Scheme," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 3(1), pages 11-28, March.
    17. Roland T. Rust & Peter C. Verhoef, 2005. "Optimizing the Marketing Interventions Mix in Intermediate-Term CRM," Marketing Science, INFORMS, vol. 24(3), pages 477-489, December.
    18. Singh, Shweta & Murthi, B.P.S. & Steffes, Erin, 2013. "Developing a measure of risk adjusted revenue (RAR) in credit cards market: Implications for customer relationship management," European Journal of Operational Research, Elsevier, vol. 224(2), pages 425-434.
    19. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    20. Park, Chang Hee & Yoon, Tae Jung, 2022. "The dark side of up-selling promotions: Evidence from an analysis of cross-brand purchase behavior☆," Journal of Retailing, Elsevier, vol. 98(4), pages 647-666.
    21. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:54:y:2008:i:1:p:100-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.