IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v29y2009i4p558-564.html
   My bibliography  Save this article

Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies

Author

Listed:
  • Robert B. Noble
  • A. John Bailer
  • Robert Park

Abstract

Worker populations often provide data on adverse responses associated with exposure to potential hazards. The relationship between hazard exposure levels and adverse response can be modeled and then inverted to estimate the exposure associated with some specified response level. One concern is that this endpoint may be sensitive to the concentration metric and other variables included in the model. Further, it may be that the models yielding different risk endpoints are all providing relatively similar fits. We focus on evaluating the impact of exposure on a continuous response by constructing a model‐averaged benchmark concentration from a weighted average of model‐specific benchmark concentrations. A method for combining the estimates based on different models is applied to lung function in a cohort of miners exposed to coal dust. In this analysis, we see that a small number of the thousands of models considered survive a filtering criterion for use in averaging. Even after filtering, the models considered yield benchmark concentrations that differ by a factor of 2 to 9 depending on the concentration metric and covariates. The model‐average BMC captures this uncertainty, and provides a useful strategy for addressing model uncertainty.

Suggested Citation

  • Robert B. Noble & A. John Bailer & Robert Park, 2009. "Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 558-564, April.
  • Handle: RePEc:wly:riskan:v:29:y:2009:i:4:p:558-564
    DOI: 10.1111/j.1539-6924.2008.01178.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2008.01178.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2008.01178.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. John Bailer & Robert B. Noble & Matthew W. Wheeler, 2005. "Model Uncertainty and Risk Estimation for Experimental Studies of Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 291-299, April.
    2. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    3. A. J. Bailer & L. T. Stayner & R. J. Smith & E. D. Kuempel & M. M. Prince, 1997. "Estimating Benchmark Concentrations and Other Noncancer Endpoints in Epidemiology Studies," Risk Analysis, John Wiley & Sons, vol. 17(6), pages 771-780, December.
    4. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    5. Hojin Moon & Hyun‐Joo Kim & James J. Chen & Ralph L. Kodell, 2005. "Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1147-1159, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    2. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    3. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    4. Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.
    5. Hojin Moon & Steven B. Kim & James J. Chen & Nysia I. George & Ralph L. Kodell, 2013. "Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 220-231, February.
    6. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    7. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    8. Matthew W. Wheeler & Todd Blessinger & Kan Shao & Bruce C. Allen & Louis Olszyk & J. Allen Davis & Jeffrey S Gift, 2020. "Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1706-1722, September.
    9. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    10. Steven B. Kim & Scott M. Bartell & Daniel L. Gillen, 2015. "Estimation of a Benchmark Dose in the Presence or Absence of Hormesis Using Posterior Averaging," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 396-408, March.
    11. Enrique López Droguett & Ali Mosleh, 2014. "Bayesian Treatment of Model Uncertainty for Partially Applicable Models," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 252-270, February.
    12. Enrique López Droguett & Ali Mosleh, 2008. "Bayesian Methodology for Model Uncertainty Using Model Performance Data," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1457-1476, October.
    13. Matthew W. Wheeler & A. John Bailer, 2007. "Properties of Model‐Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 659-670, June.
    14. Harriet Namata & Marc Aerts & Christel Faes & Peter Teunis, 2008. "Model Averaging in Microbial Risk Assessment Using Fractional Polynomials," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 891-905, August.
    15. Jin‐Hua Chen & Chun‐Shu Chen & Meng‐Fan Huang & Hung‐Chih Lin, 2016. "Estimating the Probability of Rare Events Occurring Using a Local Model Averaging," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1855-1870, October.
    16. Enrique López Droguett & Ali Mosleh, 2013. "Integrated treatment of model and parameter uncertainties through a Bayesian approach," Journal of Risk and Reliability, , vol. 227(1), pages 41-54, February.
    17. Esben Budtz‐Jørgensen & David Bellinger & Bruce Lanphear & Philippe Grandjean & on behalf of the International Pooled Lead Study Investigators, 2013. "An International Pooled Analysis for Obtaining a Benchmark Dose for Environmental Lead Exposure in Children," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 450-461, March.
    18. Yasushi Suwazono & Mirei Dochi & Etsuko Kobayashi & Mitsuhiro Oishi & Yasushi Okubo & Kumihiko Tanaka & Kouichi Sakata, 2008. "Benchmark Duration of Work Hours for Development of Fatigue Symptoms in Japanese Workers with Adjustment for Job‐Related Stress," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1689-1698, December.
    19. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
    20. Zi‐Fan Yu & Paul J. Catzlano, 2008. "A Simulation Study of Quantitative Risk Assessment for Bivariate Continuous Outcomes," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1415-1430, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:29:y:2009:i:4:p:558-564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.