An International Pooled Analysis for Obtaining a Benchmark Dose for Environmental Lead Exposure in Children
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1539-6924.2012.01882.x
Download full text from publisher
References listed on IDEAS
- Matthew W. Wheeler & A. John Bailer, 2009. "Benchmark Dose Estimation Incorporating Multiple Data Sources," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 249-256, February.
- Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
- Katsuyuki Murata & Esben Budtz‐Jørgensen & Philippe Grandjean, 2002. "Benchmark Dose Calculations for Methylmercury‐Associated Delays on Evoked Potential Latencies in Two Cohorts of Children," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 465-474, June.
- Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paulina Farías & David Hernández-Bonilla & Hortensia Moreno-Macías & Sergio Montes-López & Lourdes Schnaas & José Luis Texcalac-Sangrador & Camilo Ríos & Horacio Riojas-Rodríguez, 2022. "Prenatal Co-Exposure to Manganese, Mercury, and Lead, and Neurodevelopment in Children during the First Year of Life," IJERPH, MDPI, vol. 19(20), pages 1-12, October.
- Stephen B. Billings & Kevin T. Schnepel, 2018.
"Life after Lead: Effects of Early Interventions for Children Exposed to Lead,"
American Economic Journal: Applied Economics, American Economic Association, vol. 10(3), pages 315-344, July.
- Billings, Stephen B. & Schnepel, Kevin T., 2017. "Life After Lead: Effects of Early Interventions for Children Exposed to Lead," IZA Discussion Papers 10872, Institute of Labor Economics (IZA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
- Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
- Kanae Karita & Eiji Yano & Miwako Dakeishi & Toyoto Iwata & Katsuyuki Murata, 2005. "Benchmark Dose of Lead Inducing Anemia at the Workplace," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 957-962, August.
- Yiliang Zhu & Tao Wang & Jenny Z.H. Jelsovsky, 2007. "Bootstrap Estimation of Benchmark Doses and Confidence Limits with Clustered Quantal Data," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 447-465, April.
- Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
- Miwako Dakeishi & Katsuyuki Murata & Akiko Tamura & Toyoto Iwata, 2006. "Relation Between Benchmark Dose and No‐Observed‐Adverse‐Effect Level in Clinical Research: Effects of Daily Alcohol Intake on Blood Pressure in Japanese Salesmen," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 115-123, February.
- Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
- Hilko Van Der Voet & Wout Slob, 2007. "Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 351-371, April.
- Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
- Yasushi Suwazono & Mirei Dochi & Etsuko Kobayashi & Mitsuhiro Oishi & Yasushi Okubo & Kumihiko Tanaka & Kouichi Sakata, 2008. "Benchmark Duration of Work Hours for Development of Fatigue Symptoms in Japanese Workers with Adjustment for Job‐Related Stress," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1689-1698, December.
- Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
- Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
- Daniela K. Nitcheva & Walter W. Piegorsch & R. Webster West & Ralph L. Kodell, 2005. "Multiplicity-Adjusted Inferences in Risk Assessment: Benchmark Analysis with Quantal Response Data," Biometrics, The International Biometric Society, vol. 61(1), pages 277-286, March.
- Zi‐Fan Yu & Paul J. Catzlano, 2008. "A Simulation Study of Quantitative Risk Assessment for Bivariate Continuous Outcomes," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1415-1430, October.
- Gupta, Ramesh C. & Wang, Na, 2009. "Estimation of extra risk and benchmark dose in dose–response models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2036-2050.
- Keiko Kubo & Kazuhiro Nogawa & Teruhiko Kido & Muneko Nishijo & Hideaki Nakagawa & Yasushi Suwazono, 2017. "Estimation of Benchmark Dose of Lifetime Cadmium Intake for Adverse Renal Effects Using Hybrid Approach in Inhabitants of an Environmentally Exposed River Basin in Japan," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 20-26, January.
- Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.
- Dette, Holger & Pepelyshev, Andrey & Shpilev, Piter & Wong, Weng Kee, 2009. "Optimal designs for estimating critical effective dose under model uncertainty in a dose response study," Technical Reports 2009,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:3:p:450-461. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.