IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v37y2017i4p716-732.html
   My bibliography  Save this article

Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment

Author

Listed:
  • Edsel A. Peña
  • Wensong Wu
  • Walter Piegorsch
  • Ronald W. West
  • LingLing An

Abstract

This article describes several approaches for estimating the benchmark dose (BMD) in a risk assessment study with quantal dose‐response data and when there are competing model classes for the dose‐response function. Strategies involving a two‐step approach, a model‐averaging approach, a focused‐inference approach, and a nonparametric approach based on a PAVA‐based estimator of the dose‐response function are described and compared. Attention is raised to the perils involved in data “double‐dipping” and the need to adjust for the model‐selection stage in the estimation procedure. Simulation results are presented comparing the performance of five model selectors and eight BMD estimators. An illustration using a real quantal‐response data set from a carcinogenecity study is provided.

Suggested Citation

  • Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
  • Handle: RePEc:wly:riskan:v:37:y:2017:i:4:p:716-732
    DOI: 10.1111/risa.12644
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12644
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zellner, Arnold & Rossi, Peter E., 1984. "Bayesian analysis of dichotomous quantal response models," Journal of Econometrics, Elsevier, vol. 25(3), pages 365-393, July.
    2. A. John Bailer & Robert B. Noble & Matthew W. Wheeler, 2005. "Model Uncertainty and Risk Estimation for Experimental Studies of Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 291-299, April.
    3. Lelys Bravo Guenni & Susan J. Simmons & Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2012. "Nonparametric estimation of benchmark doses in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 23(8), pages 717-728, December.
    4. Lelys Bravo Guenni & Susan J. Simmons & R. Webster West & Walter W. Piegorsch & Edsel A. Peña & Lingling An & Wensong Wu & Alissa A. Wickens & Hui Xiong & Wenhai Chen, 2012. "The impact of model uncertainty on benchmark dose estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 23(8), pages 706-716, December.
    5. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    6. Morales, Knashawn H. & Ibrahim, Joseph G. & Chen, Chien-Jen & Ryan, Louise M., 2006. "Bayesian Model Averaging With Applications to Benchmark Dose Estimation for Arsenic in Drinking Water," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 9-17, March.
    7. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    2. Maria A. Sans‐Fuentes & Walter W. Piegorsch, 2021. "Benchmark dose risk analysis with mixed‐factor quantal data in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    2. Matthew W. Wheeler & Todd Blessinger & Kan Shao & Bruce C. Allen & Louis Olszyk & J. Allen Davis & Jeffrey S Gift, 2020. "Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1706-1722, September.
    3. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    4. Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.
    5. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    6. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    7. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    8. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    9. Matthew W. Wheeler & Jose Cortiñas Abrahantes & Marc Aerts & Jeffery S. Gift & Jerry Allen Davis, 2022. "Continuous model averaging for benchmark dose analysis: Averaging over distributional forms," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    10. Marc Aerts & Matthew W. Wheeler & José Cortiñas Abrahantes, 2020. "An extended and unified modeling framework for benchmark dose estimation for both continuous and binary data," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    11. Hojin Moon & Steven B. Kim & James J. Chen & Nysia I. George & Ralph L. Kodell, 2013. "Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 220-231, February.
    12. Matthew W. Wheeler & A. John Bailer, 2007. "Properties of Model‐Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 659-670, June.
    13. Lizhen Lin & Walter W. Piegorsch & Rabi Bhattacharya, 2015. "Nonparametric Benchmark Dose Estimation with Continuous Dose-Response Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 713-731, September.
    14. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    15. Jin‐Hua Chen & Chun‐Shu Chen & Meng‐Fan Huang & Hung‐Chih Lin, 2016. "Estimating the Probability of Rare Events Occurring Using a Local Model Averaging," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1855-1870, October.
    16. Robert B. Noble & A. John Bailer & Robert Park, 2009. "Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 558-564, April.
    17. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    18. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
    19. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    20. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:37:y:2017:i:4:p:716-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.