IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v34y2014i2p252-270.html
   My bibliography  Save this article

Bayesian Treatment of Model Uncertainty for Partially Applicable Models

Author

Listed:
  • Enrique López Droguett
  • Ali Mosleh

Abstract

This article discusses how analyst's or expert's beliefs on the credibility and quality of models can be assessed and incorporated into the uncertainty assessment of an unknown of interest. The proposed methodology is a specialization of the Bayesian framework for the assessment of model uncertainty presented in an earlier paper. This formalism treats models as sources of information in assessing the uncertainty of an unknown, and it allows the use of predictions from multiple models as well as experimental validation data about the models’ performances. In this article, the methodology is extended to incorporate additional types of information about the model, namely, subjective information in terms of credibility of the model and its applicability when it is used outside its intended domain of application. An example in the context of fire risk modeling is also provided.

Suggested Citation

  • Enrique López Droguett & Ali Mosleh, 2014. "Bayesian Treatment of Model Uncertainty for Partially Applicable Models," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 252-270, February.
  • Handle: RePEc:wly:riskan:v:34:y:2014:i:2:p:252-270
    DOI: 10.1111/risa.12121
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12121
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. John Bailer & Robert B. Noble & Matthew W. Wheeler, 2005. "Model Uncertainty and Risk Estimation for Experimental Studies of Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 291-299, April.
    2. Enrique López Droguett & Ali Mosleh, 2008. "Bayesian Methodology for Model Uncertainty Using Model Performance Data," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1457-1476, October.
    3. Brock, William A. & Durlauf, Steven N. & West, Kenneth D., 2007. "Model uncertainty and policy evaluation: Some theory and empirics," Journal of Econometrics, Elsevier, vol. 136(2), pages 629-664, February.
    4. Pourgol-Mohamad, Mohammad & Mosleh, Ali & Modarres, Mohammad, 2010. "Methodology for the use of experimental data to enhance model output uncertainty assessment in thermal hydraulics codes," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 77-86.
    5. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    6. Piero Baraldi & Enrico Zio, 2010. "A Comparison Between Probabilistic and Dempster‐Shafer Theory Approaches to Model Uncertainty Analysis in the Performance Assessment of Radioactive Waste Repositories," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1139-1156, July.
    7. Robert T. Clemen & Robert L. Winkler, 1993. "Aggregating Point Estimates: A Flexible Modeling Approach," Management Science, INFORMS, vol. 39(4), pages 501-515, April.
    8. Reza Kazemi & Ali Mosleh, 2012. "Improving Default Risk Prediction Using Bayesian Model Uncertainty Techniques," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1888-1900, November.
    9. Hojin Moon & Hyun‐Joo Kim & James J. Chen & Ralph L. Kodell, 2005. "Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1147-1159, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    2. Matteo Vagnoli & Francesco Di Maio & Enrico Zio, 2018. "Ensembles of climate change models for risk assessment of nuclear power plants," Journal of Risk and Reliability, , vol. 232(2), pages 185-200, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrique López Droguett & Ali Mosleh, 2013. "Integrated treatment of model and parameter uncertainties through a Bayesian approach," Journal of Risk and Reliability, , vol. 227(1), pages 41-54, February.
    2. Enrique López Droguett & Ali Mosleh, 2008. "Bayesian Methodology for Model Uncertainty Using Model Performance Data," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1457-1476, October.
    3. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    4. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    5. Matteo Vagnoli & Francesco Di Maio & Enrico Zio, 2018. "Ensembles of climate change models for risk assessment of nuclear power plants," Journal of Risk and Reliability, , vol. 232(2), pages 185-200, April.
    6. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    7. Mirjana Glisovic‐Bensa & Walter W. Piegorsch & Edward J. Bedrick, 2024. "Bayesian benchmark dose risk assessment with mixed‐factor quantal data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
    8. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    9. Steven B. Kim & Scott M. Bartell & Daniel L. Gillen, 2015. "Estimation of a Benchmark Dose in the Presence or Absence of Hormesis Using Posterior Averaging," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 396-408, March.
    10. Ali Jamshidi & Shahrzad Faghih‐Roohi & Siamak Hajizadeh & Alfredo Núñez & Robert Babuska & Rolf Dollevoet & Zili Li & Bart De Schutter, 2017. "A Big Data Analysis Approach for Rail Failure Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1495-1507, August.
    11. Hojin Moon & Steven B. Kim & James J. Chen & Nysia I. George & Ralph L. Kodell, 2013. "Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 220-231, February.
    12. Matthew W. Wheeler & A. John Bailer, 2007. "Properties of Model‐Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 659-670, June.
    13. Harriet Namata & Marc Aerts & Christel Faes & Peter Teunis, 2008. "Model Averaging in Microbial Risk Assessment Using Fractional Polynomials," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 891-905, August.
    14. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    15. Jin‐Hua Chen & Chun‐Shu Chen & Meng‐Fan Huang & Hung‐Chih Lin, 2016. "Estimating the Probability of Rare Events Occurring Using a Local Model Averaging," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1855-1870, October.
    16. Robert B. Noble & A. John Bailer & Robert Park, 2009. "Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 558-564, April.
    17. Orphanides, Athanasios & Williams, John C., 2008. "Learning, expectations formation, and the pitfalls of optimal control monetary policy," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 80-96, October.
    18. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    19. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    20. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:34:y:2014:i:2:p:252-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.