IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v25y2005i5p1147-1159.html
   My bibliography  Save this article

Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness

Author

Listed:
  • Hojin Moon
  • Hyun‐Joo Kim
  • James J. Chen
  • Ralph L. Kodell

Abstract

Since the National Food Safety Initiative of 1997, risk assessment has been an important issue in food safety areas. Microbial risk assessment is a systematic process for describing and quantifying a potential to cause adverse health effects associated with exposure to microorganisms. Various dose‐response models for estimating microbial risks have been investigated. We have considered four two‐parameter models and four three‐parameter models in order to evaluate variability among the models for microbial risk assessment using infectivity and illness data from studies with human volunteers exposed to a variety of microbial pathogens. Model variability is measured in terms of estimated ED01s and ED10s, with the view that these effective dose levels correspond to the lower and upper limits of the 1% to 10% risk range generally recommended for establishing benchmark doses in risk assessment. Parameters of the statistical models are estimated using the maximum likelihood method. In this article a weighted average of effective dose estimates from eight two‐ and three‐parameter dose‐response models, with weights determined by the Kullback information criterion, is proposed to address model uncertainties in microbial risk assessment. The proposed procedures for incorporating model uncertainties and making inferences are illustrated with human infection/illness dose‐response data sets.

Suggested Citation

  • Hojin Moon & Hyun‐Joo Kim & James J. Chen & Ralph L. Kodell, 2005. "Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1147-1159, October.
  • Handle: RePEc:wly:riskan:v:25:y:2005:i:5:p:1147-1159
    DOI: 10.1111/j.1539-6924.2005.00676.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2005.00676.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2005.00676.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. John Bailer & Robert B. Noble & Matthew W. Wheeler, 2005. "Model Uncertainty and Risk Estimation for Experimental Studies of Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 291-299, April.
    2. Cavanaugh, Joseph E., 1997. "Unifying the derivations for the Akaike and corrected Akaike information criteria," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 201-208, April.
    3. Harry M. Marks & Margaret E. Coleman & C.‐T. Jordan Lin & Tanya Roberts, 1998. "Topics in Microbial Risk Assessment: Dynamic Flow Tree Process," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 309-328, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    2. Enrique López Droguett & Ali Mosleh, 2008. "Bayesian Methodology for Model Uncertainty Using Model Performance Data," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1457-1476, October.
    3. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    4. Jin‐Hua Chen & Chun‐Shu Chen & Meng‐Fan Huang & Hung‐Chih Lin, 2016. "Estimating the Probability of Rare Events Occurring Using a Local Model Averaging," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1855-1870, October.
    5. Matthew W. Wheeler & A. John Bailer, 2007. "Properties of Model‐Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 659-670, June.
    6. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    7. Enrique López Droguett & Ali Mosleh, 2013. "Integrated treatment of model and parameter uncertainties through a Bayesian approach," Journal of Risk and Reliability, , vol. 227(1), pages 41-54, February.
    8. Robert B. Noble & A. John Bailer & Robert Park, 2009. "Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 558-564, April.
    9. Steven B. Kim & Scott M. Bartell & Daniel L. Gillen, 2015. "Estimation of a Benchmark Dose in the Presence or Absence of Hormesis Using Posterior Averaging," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 396-408, March.
    10. Harriet Namata & Marc Aerts & Christel Faes & Peter Teunis, 2008. "Model Averaging in Microbial Risk Assessment Using Fractional Polynomials," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 891-905, August.
    11. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    12. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    13. Enrique López Droguett & Ali Mosleh, 2014. "Bayesian Treatment of Model Uncertainty for Partially Applicable Models," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 252-270, February.
    14. Sarah C. Taft & Stephanie A. Hines, 2012. "Benchmark Dose Analysis for Bacillus anthracis Inhalation Exposures in the Nonhuman Primate," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1750-1768, October.
    15. Hojin Moon & Steven B. Kim & James J. Chen & Nysia I. George & Ralph L. Kodell, 2013. "Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 220-231, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hojin Moon & Steven B. Kim & James J. Chen & Nysia I. George & Ralph L. Kodell, 2013. "Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 220-231, February.
    2. Harriet Namata & Marc Aerts & Christel Faes & Peter Teunis, 2008. "Model Averaging in Microbial Risk Assessment Using Fractional Polynomials," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 891-905, August.
    3. Carlos A. Medel, 2015. "Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 30(1), pages 57-72, Abril.
    4. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    5. Jed Armstrong & Özer Karagedikli, 2017. "The role of non-participants in labour market dynamics," Reserve Bank of New Zealand Analytical Notes series AN2017/01, Reserve Bank of New Zealand.
    6. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    7. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    8. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. Hafidi, B. & Mkhadri, A., 2006. "A corrected Akaike criterion based on Kullback's symmetric divergence: applications in time series, multiple and multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1524-1550, March.
    10. Thi Mai Hoa Ha & Derrick Yong & Elizabeth Mei Yin Lee & Prathab Kumar & Yuan Kun Lee & Weibiao Zhou, 2017. "Activation and inactivation of Bacillus pumilus spores by kiloelectron volt X-ray irradiation," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-15, May.
    11. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    12. Charles N. Haas, 2002. "Conditional Dose‐Response Relationships for Microorganisms: Development and Application," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 455-463, June.
    13. Margaret E. Coleman & Sonja Sandberg & Steven A. Anderson, 2003. "Impact of Microbial Ecology of Meat and Poultry Products on Predictions from Exposure Assessment Scenarios for Refrigerated Storage," Risk Analysis, John Wiley & Sons, vol. 23(1), pages 215-228, February.
    14. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    15. You, Kisung & Suh, Changhee, 2022. "Parameter estimation and model-based clustering with spherical normal distribution on the unit hypersphere," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    16. Matthew W. Wheeler & Todd Blessinger & Kan Shao & Bruce C. Allen & Louis Olszyk & J. Allen Davis & Jeffrey S Gift, 2020. "Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1706-1722, September.
    17. Bengtsson, Thomas & Cavanaugh, Joseph E., 2006. "An improved Akaike information criterion for state-space model selection," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2635-2654, June.
    18. Shahrestani, Parnia & Rafei, Meysam, 2020. "The impact of oil price shocks on Tehran Stock Exchange returns: Application of the Markov switching vector autoregressive models," Resources Policy, Elsevier, vol. 65(C).
    19. Farid Shirazi & Nick Hajli, 2021. "IT-Enabled Sustainable Innovation and the Global Digital Divides," Sustainability, MDPI, vol. 13(17), pages 1-24, August.
    20. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:25:y:2005:i:5:p:1147-1159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.