IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v37y2017i11p2107-2118.html
   My bibliography  Save this article

Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints

Author

Listed:
  • Matthew W. Wheeler
  • A. John Bailer
  • Tarah Cole
  • Robert M. Park
  • Kan Shao

Abstract

Quantitative risk assessment often begins with an estimate of the exposure or dose associated with a particular risk level from which exposure levels posing low risk to populations can be extrapolated. For continuous exposures, this value, the benchmark dose, is often defined by a specified increase (or decrease) from the median or mean response at no exposure. This method of calculating the benchmark dose does not take into account the response distribution and, consequently, cannot be interpreted based upon probability statements of the target population. We investigate quantile regression as an alternative to the use of the median or mean regression. By defining the dose–response quantile relationship and an impairment threshold, we specify a benchmark dose as the dose associated with a specified probability that the population will have a response equal to or more extreme than the specified impairment threshold. In addition, in an effort to minimize model uncertainty, we use Bayesian monotonic semiparametric regression to define the exposure–response quantile relationship, which gives the model flexibility to estimate the quantal dose–response function. We describe this methodology and apply it to both epidemiology and toxicology data.

Suggested Citation

  • Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
  • Handle: RePEc:wly:riskan:v:37:y:2017:i:11:p:2107-2118
    DOI: 10.1111/risa.12762
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12762
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Salomon J. Sand & Dietrich Von Rosen & Agneta Falk Filipsson, 2003. "Benchmark Calculations in Risk Assessment Using Continuous Dose‐Response Information: The Influence of Variance and the Determination of a Cut‐Off Value," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1059-1068, October.
    2. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    3. Robert B. Noble & A. John Bailer & Robert Park, 2009. "Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 558-564, April.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Matthew W. Wheeler & Kan Shao & A. John Bailer, 2015. "Quantile benchmark dose estimation for continuous endpoints," Environmetrics, John Wiley & Sons, Ltd., vol. 26(5), pages 363-372, August.
    6. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    7. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirjana Glisovic‐Bensa & Walter W. Piegorsch & Edward J. Bedrick, 2024. "Bayesian benchmark dose risk assessment with mixed‐factor quantal data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
    2. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    3. Maria A. Sans‐Fuentes & Walter W. Piegorsch, 2021. "Benchmark dose risk analysis with mixed‐factor quantal data in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    2. Fabrizi, Enrico & Salvati, Nicola & Trivisano, Carlo, 2020. "Robust Bayesian small area estimation based on quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    3. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    4. Wang, Kai Y.K. & Chen, Cathy W.S. & So, Mike K.P., 2023. "Quantile three-factor model with heteroskedasticity, skewness, and leptokurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    5. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    6. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
    7. Kai Yang & Luan Zhao & Qian Hu & Wenshan Wang, 2024. "Bayesian Quantile Regression Analysis for Bivariate Vector Autoregressive Models with an Application to Financial Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 1939-1963, October.
    8. Liu, Qingyang & Huang, Xianzheng & Bai, Ray, 2024. "Bayesian modal regression based on mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    9. Matthew W. Wheeler & Jose Cortiñas Abrahantes & Marc Aerts & Jeffery S. Gift & Jerry Allen Davis, 2022. "Continuous model averaging for benchmark dose analysis: Averaging over distributional forms," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    10. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
    11. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    12. Walter W. Piegorsch & Susan L. Cutter & Frank Hardisty, 2007. "Benchmark Analysis for Quantifying Urban Vulnerability to Terrorist Incidents," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1411-1425, December.
    13. Alice X. D. Dong & Jennifer S. K. Chan & Gareth W. Peters, 2014. "Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression," Papers 1402.2492, arXiv.org.
    14. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    15. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    16. Siamak Ghasemzadeh & Mojtaba Ganjali & Taban Baghfalaki, 2018. "Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 321-348, December.
    17. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    18. Duncan Lee & Tereza Neocleous, 2010. "Bayesian quantile regression for count data with application to environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 905-920, November.
    19. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    20. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:37:y:2017:i:11:p:2107-2118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.