IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v34y2023i5ne2797.html
   My bibliography  Save this article

New estimation methods for extremal bivariate return curves

Author

Listed:
  • C. J. R. Murphy‐Barltrop
  • J. L. Wadsworth
  • E. F. Eastoe

Abstract

In the multivariate setting, estimates of extremal risk measures are important in many contexts, such as environmental planning and structural engineering. In this paper, we propose new estimation methods for extremal bivariate return curves, a risk measure that is the natural bivariate extension to a return level. Unlike several existing techniques, our estimates are based on bivariate extreme value models that can capture both key forms of extremal dependence. We devise tools for validating return curve estimates, as well as representing their uncertainty, and compare a selection of curve estimation techniques through simulation studies. We apply the methodology to two metocean data sets, with diagnostics indicating generally good performance.

Suggested Citation

  • C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
  • Handle: RePEc:wly:envmet:v:34:y:2023:i:5:n:e2797
    DOI: 10.1002/env.2797
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2797
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Shooter & E. Ross & A. Ribal & I. R. Young & P. Jonathan, 2021. "Spatial dependence of extreme seas in the North East Atlantic from satellite altimeter measurements," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    2. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    3. Stuart Coles, 2002. "Models and inference for uncertainty in extremal dependence," Biometrika, Biometrika Trust, vol. 89(1), pages 183-196, March.
    4. Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.
    5. Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
    6. Chang Yu & Ondrej Blaha & Michael Kane & Wei Wei & Denise Esserman & Daniel Zelterman, 2022. "Regression methods for the appearances of extremes in climate data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(7), November.
    7. Julien Worms & Philippe Naveau, 2022. "Record events attribution in climate studies," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    8. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    9. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    10. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    11. Raphaël Huser & Jennifer L. Wadsworth, 2019. "Modeling Spatial Processes with Unknown Extremal Dependence Class," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 434-444, January.
    12. E. F. Eastoe, 2019. "Nonstationarity in peaks‐over‐threshold river flows: A regional random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 30(5), August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murphy-Barltrop, C.J.R. & Wadsworth, J.L., 2024. "Modelling non-stationarity in asymptotically independent extremes," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murphy-Barltrop, C.J.R. & Wadsworth, J.L., 2024. "Modelling non-stationarity in asymptotically independent extremes," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    2. R. Shooter & E. Ross & A. Ribal & I. R. Young & P. Jonathan, 2021. "Spatial dependence of extreme seas in the North East Atlantic from satellite altimeter measurements," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    3. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Liu, Y. & Tawn, J.A., 2014. "Self-consistent estimation of conditional multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 19-35.
    5. Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
    6. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    7. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    8. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    9. Papastathopoulos, Ioannis & Tawn, Jonathan A., 2016. "Conditioned limit laws for inverted max-stable processes," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 214-228.
    10. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    11. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
    12. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    13. Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016. "How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201605, University of Turin.
    14. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    15. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    16. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    17. Hugo C. Winter & Jonathan A. Tawn, 2016. "Modelling heatwaves in central France: a case-study in extremal dependence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 345-365, April.
    18. Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.
    19. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    20. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:34:y:2023:i:5:n:e2797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.