IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v89y2002i1p183-196.html
   My bibliography  Save this article

Models and inference for uncertainty in extremal dependence

Author

Listed:
  • Stuart Coles

Abstract

Conventionally, modelling of multivariate extremes has been based on the class of multivariate extreme value distributions. More recently, other classes have been developed, allowing for the possibility that, whilst dependence is observed at finite levels, the limit distribution is independent. A number of articles have shown this development to be important for accurate estimation of the extremal properties, both of theoretical processes and observed datasets. It has also been shown that, so far as dependence is concerned, the choice between modelling with either asymptotically dependent or asymptotically independent distributions can be far more influential than model choice within either of these two classes. In this paper we explore the issue of modelling across both classes, examining in particular the effect of uncertainty caused by lack of knowledge about the status of asymptotic dependence. This is achieved by new multivariate models whose parameter spaces are such that asymptotic dependence occurs on a boundary. Standard techniques in Bayesian inference, implemented through Markov chain Monte Carlo, enable inferences to be drawn that assign posterior probability mass to the boundary region. The techniques are illustrated on a set of oceanographic data for which previous analyses have shown that it is difficult to resolve the question of asymptotic dependence status, which is however important in model extrapolation. Copyright Biometrika Trust 2002, Oxford University Press.

Suggested Citation

  • Stuart Coles, 2002. "Models and inference for uncertainty in extremal dependence," Biometrika, Biometrika Trust, vol. 89(1), pages 183-196, March.
  • Handle: RePEc:oup:biomet:v:89:y:2002:i:1:p:183-196
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    2. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. R. Vázquez & K. Beven & J. Feyen, 2009. "GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1325-1349, May.
    4. Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
    5. Manaf Ahmed & Véronique Maume‐Deschamps & Pierre Ribereau, 2022. "Recognizing a spatial extreme dependence structure: A deep learning approach," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    6. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:89:y:2002:i:1:p:183-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.