IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v33y2022i8ne2777.html
   My bibliography  Save this article

Record events attribution in climate studies

Author

Listed:
  • Julien Worms
  • Philippe Naveau

Abstract

Within the statistical climatology literature, inferring the contributions of potential causes with regard to climate change has become a recurrent research theme during this last decade. In particular, disentangling human induced (anthropogenic) forcings from natural causes represents a nontrivial statistical task, especially when the focal point moves away from mean behaviors and goes towards extreme events with high societal impacts. Most studies found in the field of extreme event attributions (EEA) rely on extreme value theory. Under this theoretical umbrella, it is often assumed that, for a given location, temporal changes in extremes can be detected in both location and scale parameters of an extreme value distribution, while its shape parameter remains unchanged over time. This assumption of constant tail shape parameters between a so‐called factual world (all forcings) and a counterfactual one (without anthropogenic forcing) can be challenged due to the fact that important forcing changes could impact large scale atmospheric and oceanic circulation patterns, and consequently, the latter can reshape the full distribution, including its shape parameter that drives extremal behavior. In this article, we study how allowing different tail shape parameters between the factual and counterfactual worlds can affect the analysis of records. In particular, we extend the work of Naveau et al. in which this case was not treated. We also add properties and theoretical inferential results about records in EEA and propose a procedure for model validation. A simulation study of our approach is detailed. Our method is applied to records of yearly maxima of daily maxima of near‐surface air temperature issued from the numerical climate model CNRM‐CM6‐1 of Météo‐France.

Suggested Citation

  • Julien Worms & Philippe Naveau, 2022. "Record events attribution in climate studies," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
  • Handle: RePEc:wly:envmet:v:33:y:2022:i:8:n:e2777
    DOI: 10.1002/env.2777
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2777
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    2. Alejandra Cabaña & Adolfo Quiroz, 2005. "Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 417-431, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    2. Michel Beine & Ilan Noy & Christopher Parsons, 2021. "Climate change, migration and voice," Climatic Change, Springer, vol. 167(1), pages 1-27, July.
    3. Luke J. Harrington, 2017. "Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change," Climatic Change, Springer, vol. 141(4), pages 641-654, April.
    4. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    5. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    6. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    7. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    8. Yang, Wangming & Luan, Yibo & Liu, Xiaolei & Yu, Xiaoyong & Miao, Lijuan & Cui, Xuefeng, 2017. "A new global anthropogenic heat estimation based on high-resolution nighttime light data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4, pages 1-11.
    9. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    10. Luke J. Harrington & Kristie L. Ebi & David J. Frame & Friederike E. L. Otto, 2022. "Integrating attribution with adaptation for unprecedented future heatwaves," Climatic Change, Springer, vol. 172(1), pages 1-7, May.
    11. Bader Alhafi Alotaibi & Weizhou Xu & Ashfaq Ahmad Shah & Wahid Ullah, 2024. "Exploring Climate-Induced Agricultural Risk in Saudi Arabia: Evidence from Farming Communities of Medina Region," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    12. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    13. Claus Doll & Stefan Klug & Riccardo Enei, 2014. "Large and small numbers: options for quantifying the costs of extremes on transport now and in 40 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 211-239, May.
    14. Pelli, Martino & Tschopp, Jeanne, 2017. "Comparative advantage, capital destruction, and hurricanes," Journal of International Economics, Elsevier, vol. 108(C), pages 315-337.
    15. Rob Dellink & Michel den Elzen & Harry Aiking & Emmy Bergsma & Frans Berkhout & Thijs Dekker & Joyeeta Gupta, 2009. "Sharing the Burden of Adaptation Financing: An Assessment of the Contributions of Countries," Working Papers 2009.59, Fondazione Eni Enrico Mattei.
    16. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    17. Paavola, Jouni & Adger, W. Neil, 2006. "Fair adaptation to climate change," Ecological Economics, Elsevier, vol. 56(4), pages 594-609, April.
    18. Meher-un-Nisa & Hafiz Muhammad Abubakar Siddique, 2022. "Climate Change and Women Health Nexus: Evidence from District Gujranwala," Journal of Policy Research (JPR), Research Foundation for Humanity (RFH), vol. 8(2), pages 54-66, August.
    19. Gu, Gaoxiang & Wang, Zheng, 2018. "China’s carbon emissions abatement under industrial restructuring by investment restriction," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 133-144.
    20. S. E. Perkins-Kirkpatrick & C. J. White & L. V. Alexander & D. Argüeso & G. Boschat & T. Cowan & J. P. Evans & M. Ekström & E. C. J. Oliver & A. Phatak & A. Purich, 2016. "Natural hazards in Australia: heatwaves," Climatic Change, Springer, vol. 139(1), pages 101-114, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:8:n:e2777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.