IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i4ne2674.html
   My bibliography  Save this article

Spatial dependence of extreme seas in the North East Atlantic from satellite altimeter measurements

Author

Listed:
  • R. Shooter
  • E. Ross
  • A. Ribal
  • I. R. Young
  • P. Jonathan

Abstract

The extremal spatial dependence of significant wave height in the North East Atlantic is explored using Joint Altimetry Satellite Oceanography Network satellite altimeter observations for the period 2002–2018, and a spatial conditional extremes model motivated by the work of Heffernan and Tawn. The analysis involves (a) registering individual satellite passes onto a template transect, (b) marginal extreme value analysis at a set of locations on the template transect and transformation from physical to standard Laplace scale, (c) estimation of the spatial conditional extremes model for a set of locations on a template transect, and (d) comparison of extreme spatial dependence for different template transects. Inferences for two transects considered are qualitatively similar; however, for the “normal ascending” transect running approximately south‐west to north‐east lying between Iceland and the United Kingdom, extremal spatial dependence is found to decay more quickly than for the second “opposite descending” transect running approximately north‐west to south‐east to the west of Ireland.

Suggested Citation

  • R. Shooter & E. Ross & A. Ribal & I. R. Young & P. Jonathan, 2021. "Spatial dependence of extreme seas in the North East Atlantic from satellite altimeter measurements," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:4:n:e2674
    DOI: 10.1002/env.2674
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2674
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    2. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    3. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    4. Jennifer L. Wadsworth & Jonathan A. Tawn, 2012. "Dependence modelling for spatial extremes," Biometrika, Biometrika Trust, vol. 99(2), pages 253-272.
    5. Raphaël Huser & Jennifer L. Wadsworth, 2019. "Modeling Spatial Processes with Unknown Extremal Dependence Class," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 434-444, January.
    6. R. Shooter & E. Ross & J. Tawn & P. Jonathan, 2019. "On spatial conditional extremes for ocean storm severity," Environmetrics, John Wiley & Sons, Ltd., vol. 30(6), September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    2. Jesper Muren & Vilhelm Niklasson & Dmitry Otryakhin & Maxim Romashin, 2024. "Automatic deforestation detectors based on frequentist statistics and their extensions for other spatial objects," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    2. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    3. Papastathopoulos, Ioannis & Tawn, Jonathan A., 2016. "Conditioned limit laws for inverted max-stable processes," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 214-228.
    4. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    5. Kereszturi, Mónika & Tawn, Jonathan, 2017. "Properties of extremal dependence models built on bivariate max-linearity," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 52-71.
    6. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
    7. Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016. "How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201605, University of Turin.
    8. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    9. Hugo C. Winter & Jonathan A. Tawn, 2016. "Modelling heatwaves in central France: a case-study in extremal dependence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 345-365, April.
    10. Stan Tendijck & Philip Jonathan & David Randell & Jonathan Tawn, 2024. "Temporal evolution of the extreme excursions of multivariate k$$ k $$th order Markov processes with application to oceanographic data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    11. Caston Sigauke & Thakhani Ravele & Lordwell Jhamba, 2022. "Extremal Dependence Modelling of Global Horizontal Irradiance with Temperature and Humidity: An Application Using South African Data," Energies, MDPI, vol. 15(16), pages 1-25, August.
    12. Klaus Schneeberger & Matthias Huttenlau & Benjamin Winter & Thomas Steinberger & Stefan Achleitner & Johann Stötter, 2019. "A Probabilistic Framework for Risk Analysis of Widespread Flood Events: A Proof‐of‐Concept Study," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 125-139, January.
    13. Federica Stolf & Antonio Canale, 2023. "A hierarchical Bayesian non‐asymptotic extreme value model for spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    14. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    15. Liu, Y. & Tawn, J.A., 2014. "Self-consistent estimation of conditional multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 19-35.
    16. Marmai, Nadine, 2016. "Farmers’ investments in innovative technologies in times of precipitation extremes: A statistical analysis for rural Tanzania," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201617, University of Turin.
    17. Daniel Maposa & Anna M. Seimela & Caston Sigauke & James J. Cochran, 2021. "Modelling temperature extremes in the Limpopo province: bivariate time-varying threshold excess approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2227-2246, July.
    18. Marta Ferreira & Helena Ferreira, 2017. "Analyzing the Gaver—Lewis Pareto Process under an Extremal Perspective," Risks, MDPI, vol. 5(3), pages 1-12, June.
    19. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    20. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:4:n:e2674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.