IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v119y2013icp81-100.html
   My bibliography  Save this article

Estimating a bivariate tail: A copula based approach

Author

Listed:
  • Di Bernardino, Elena
  • Maume-Deschamps, Véronique
  • Prieur, Clémentine

Abstract

This paper deals with the problem of estimating the tail of a bivariate distribution function. To this end we develop a general extension of the POT (peaks-over-threshold) method, mainly based on a two-dimensional version of the Pickands–Balkema–de Haan Theorem. We introduce a new parameter that describes the nature of the tail dependence, and we provide a way to estimate it. We construct a two-dimensional tail estimator and study its asymptotic properties. We also present real data examples which illustrate our theoretical results.

Suggested Citation

  • Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
  • Handle: RePEc:eee:jmvana:v:119:y:2013:i:c:p:81-100
    DOI: 10.1016/j.jmva.2013.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1300050X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.H.J. Einmahl, 1990. "The empirical distribution function as a tail estimator," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 44(2), pages 79-82, June.
    2. Einmahl, J.H.J. & Krajina, A. & Segers, J.J.J., 2007. "A Method of Moments Estimator of Tail Dependence," Other publications TiSEM 6ee60ab8-3c01-4bd9-aa5e-7, Tilburg University, School of Economics and Management.
    3. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    4. Peng, L., 1999. "Estimation of the coefficient of tail dependence in bivariate extremes," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 399-409, July.
    5. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2006. "Weighted approximations of tail copula processes with applications to testing the bivariate extreme value condition," Other publications TiSEM 18b65ac3-ba79-4bff-ad53-2, Tilburg University, School of Economics and Management.
    6. Charpentier, Arthur & Segers, Johan, 2007. "Lower tail dependence for Archimedean copulas: Characterizations and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 525-532, May.
    7. Beirlant, J. & Dierckx, G. & Guillou, A., 2011. "Bias-reduced estimators for bivariate tail modelling," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 18-26, July.
    8. Schlather, Martin, 2001. "Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 325-329, June.
    9. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    10. Stuart G. Coles & Jonathan A. Tawn, 1994. "Statistical Methods for Multivariate Extremes: An Application to Structural Design," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 1-31, March.
    11. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On the distribution of Pickands coordinates in bivariate EV and GP models," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 267-295, April.
    12. El-Aroui, Mhamed-Ali & Diebolt, Jean, 2002. "On the use of the peaks over thresholds method for estimating out-of-sample quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 453-475, June.
    13. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    14. Juri, Alessandro & Wuthrich, Mario V., 2002. "Copula convergence theorems for tail events," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 405-420, June.
    15. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    16. Michel, René, 2008. "Some notes on multivariate generalized Pareto distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1288-1301, July.
    17. Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhao Liu & Petar M. Djurić & Young Shin Kim & Svetlozar T. Rachev & James Glimm, 2021. "Systemic Risk Modeling with Lévy Copulas," JRFM, MDPI, vol. 14(6), pages 1-20, June.
    2. Di Bernardino, Elena & Laloë, Thomas & Pakzad, Cambyse, 2024. "Estimation of extreme multivariate expectiles with functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    2. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    3. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    4. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    5. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.
    6. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    7. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    8. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2020. "Robust nonparametric estimation of the conditional tail dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    9. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    10. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    11. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    12. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    13. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.
    14. Liu, Y. & Tawn, J.A., 2014. "Self-consistent estimation of conditional multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 19-35.
    15. Y Hoga, 2018. "A structural break test for extremal dependence in β-mixing random vectors," Biometrika, Biometrika Trust, vol. 105(3), pages 627-643.
    16. Einmahl, J.H.J. & Segers, J.J.J., 2008. "Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution," Other publications TiSEM e9340b9a-fe69-4e77-8594-8, Tilburg University, School of Economics and Management.
    17. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    18. Mikael Escobar-Bach & Yuri Goegebeur & Armelle Guillou & Alexandre You, 2017. "Bias-corrected and robust estimation of the bivariate stable tail dependence function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 284-307, June.
    19. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    20. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:119:y:2013:i:c:p:81-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.