IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v71y2009i1p219-241.html
   My bibliography  Save this article

A new class of models for bivariate joint tails

Author

Listed:
  • Alexandra Ramos
  • Anthony Ledford

Abstract

Summary. A fundamental issue in applied multivariate extreme value analysis is modelling dependence within joint tail regions. The primary focus of this work is to extend the classical pseudopolar treatment of multivariate extremes to develop an asymptotically motivated representation of extremal dependence that also encompasses asymptotic independence. Starting with the usual mild bivariate regular variation assumptions that underpin the coefficient of tail dependence as a measure of extremal dependence, our main result is a characterization of the limiting structure of the joint survivor function in terms of an essentially arbitrary non‐negative measure that must satisfy some mild constraints. We then construct parametric models from this new class and study in detail one example that accommodates asymptotic dependence, asymptotic independence and asymmetry within a straightforward parsimonious parameterization. We provide a fast simulation algorithm for this example and detail likelihood‐based inference including tests for asymptotic dependence and symmetry which are useful for submodel selection. We illustrate this model by application to both simulated and real data. In contrast with the classical multivariate extreme value approach, which concentrates on the limiting distribution of normalized componentwise maxima, our framework focuses directly on the structure of the limiting joint survivor function and provides significant extensions of both the theoretical and the practical tools that are available for joint tail modelling.

Suggested Citation

  • Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
  • Handle: RePEc:bla:jorssb:v:71:y:2009:i:1:p:219-241
    DOI: 10.1111/j.1467-9868.2008.00684.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2008.00684.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2008.00684.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
    2. Stuart Coles, 2002. "Models and inference for uncertainty in extremal dependence," Biometrika, Biometrika Trust, vol. 89(1), pages 183-196, March.
    3. P. Bortot & S. Coles & J. Tawn, 2000. "The multivariate Gaussian tail model: an application to oceanographic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 31-049.
    4. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    2. Fung, Thomas & Seneta, Eugene, 2021. "Tail asymptotics for the bivariate equi-skew generalized hyperbolic distribution and its Variance-Gamma special case," Statistics & Probability Letters, Elsevier, vol. 178(C).
    3. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    4. Bikramjit Das & Vicky Fasen-Hartmann, 2023. "Measuring risk contagion in financial networks with CoVaR," Papers 2309.15511, arXiv.org, revised Jun 2024.
    5. Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
    6. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
    7. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    8. Chiapino, Mael & Sabourin, Anne & Segers, Johan, 2018. "Identifying groups of variables with the potential of being large simultaneously," LIDAM Discussion Papers ISBA 2018006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Edward Furman & Jianxi Su & Riv{c}ardas Zitikis, 2014. "Paths and indices of maximal tail dependence," Papers 1405.1326, arXiv.org, revised Jul 2016.
    10. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    11. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    12. Y Hoga, 2018. "A structural break test for extremal dependence in β-mixing random vectors," Biometrika, Biometrika Trust, vol. 105(3), pages 627-643.
    13. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    14. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    15. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    16. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.
    17. Liu, Y. & Tawn, J.A., 2014. "Self-consistent estimation of conditional multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 19-35.
    18. Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.
    19. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    20. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    2. Sabourin, Anne & Naveau, Philippe, 2014. "Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 542-567.
    3. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    4. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    5. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    6. Manaf Ahmed & Véronique Maume‐Deschamps & Pierre Ribereau, 2022. "Recognizing a spatial extreme dependence structure: A deep learning approach," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    7. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    8. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    9. Fils-Villetard, A. & Guillou, A. & Segers, J., 2005. "Projection Estimates of Constrained Functional Parameters," Discussion Paper 2005-111, Tilburg University, Center for Economic Research.
    10. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    11. Zhang, Dabao & Wells, Martin T. & Peng, Liang, 2008. "Nonparametric estimation of the dependence function for a multivariate extreme value distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 577-588, April.
    12. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
    13. Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
    14. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    15. Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
    16. Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016. "How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201605, University of Turin.
    17. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
    18. Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
    19. Schlather, Martin, 2001. "Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 325-329, June.
    20. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2004. "Weighted Approximations of Tail Copula Processes with Application to Testing the Multivariate Extreme Value Condition," Discussion Paper 2004-71, Tilburg University, Center for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:1:p:219-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.