IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v178y2021ics0167715221001449.html
   My bibliography  Save this article

Tail asymptotics for the bivariate equi-skew generalized hyperbolic distribution and its Variance-Gamma special case

Author

Listed:
  • Fung, Thomas
  • Seneta, Eugene

Abstract

We derive the asymptotic rate of decay to the tail dependence coefficient, zero, of the bivariate Variance-Gamma distribution under an equal-skewness condition, using the bivariate skew Generalized Hyperbolic distribution. The bivariate problem is first reduced to a univariate one.

Suggested Citation

  • Fung, Thomas & Seneta, Eugene, 2021. "Tail asymptotics for the bivariate equi-skew generalized hyperbolic distribution and its Variance-Gamma special case," Statistics & Probability Letters, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:stapro:v:178:y:2021:i:c:s0167715221001449
    DOI: 10.1016/j.spl.2021.109182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221001449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    2. Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
    3. Hashorva, Enkelejd, 2010. "On the residual dependence index of elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1070-1078, July.
    4. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    5. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    6. Loperfido, Nicola, 2002. "Statistical implications of selectively reported inferential results," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 13-22, January.
    7. Fung, Thomas & Seneta, Eugene, 2010. "Tail dependence for two skew t distributions," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 784-791, May.
    8. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    9. Thomas Fung & Eugene Seneta, 2018. "Quantile Function Expansion Using Regularly Varying Functions," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1091-1103, December.
    10. Thomas Fung & Eugene Seneta, 2010. "Tail dependence and skew distributions," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 327-333.
    11. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Fung & Eugene Seneta, 2023. "On Familywise Error Rate Cutoffs under Pairwise Exchangeability," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shuang & Peng, Zuoxiang & Nadarajah, Saralees, 2022. "Tail dependence functions of the bivariate Hüsler–Reiss model," Statistics & Probability Letters, Elsevier, vol. 180(C).
    2. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    3. Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
    4. Xin Lao & Zuoxiang Peng & Saralees Nadarajah, 2023. "Tail Dependence Functions of Two Classes of Bivariate Skew Distributions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    5. Nolde, Natalia, 2014. "Geometric interpretation of the residual dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 85-95.
    6. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    7. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    8. Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.
    9. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    10. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    11. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    12. Raphaël Huser & Thomas Opitz & Emeric Thibaud, 2021. "Max‐infinitely divisible models and inference for spatial extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 321-348, March.
    13. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    14. Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
    15. Tankov, Peter, 2016. "Tails of weakly dependent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 73-86.
    16. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    17. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.
    18. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Efstathios Panayi & Gareth W. Peters, 2015. "Stochastic simulation framework for the limit order book using liquidity-motivated agents," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-52.
    20. Fung, Thomas & Seneta, Eugene, 2011. "The bivariate normal copula function is regularly varying," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1670-1676, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:178:y:2021:i:c:s0167715221001449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.