IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v21y2016i3d10.1007_s13253-016-0254-5.html
   My bibliography  Save this article

Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series

Author

Listed:
  • Paola Bortot

    (Università di Bologna)

  • Carlo Gaetan

    (Università Ca’ Foscari - Venezia)

Abstract

Two features are often observed in analyses of both daily and hourly rainfall series. One is the tendency for the strength of temporal dependence to decrease when looking at the series above increasing thresholds. The other is the empirical evidence for rainfall extremes to approach independence at high enough levels. To account for these features, Bortot and Gaetan (Scand J Stat 41:606–621, 2014) focus on rainfall exceedances above a fixed high threshold and model their dynamics through a hierarchical approach that allows for changes in the temporal dependence properties when moving further into the right tail. It is found that this modelling procedure performs generally well in analyses of daily rainfalls, but has some inherent theoretical limitations that affect its goodness of fit in the context of hourly data. In order to overcome this drawback, we develop here a modification of the Bortot and Gaetan model derived from a copula-type technique. Application of both model versions to rainfall series recorded in Camborne, England, shows that they provide similar results when studying daily data, but in the analysis of hourly data the modified version is superior.

Suggested Citation

  • Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
  • Handle: RePEc:spr:jagbes:v:21:y:2016:i:3:d:10.1007_s13253-016-0254-5
    DOI: 10.1007/s13253-016-0254-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-016-0254-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-016-0254-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Huser & A. C. Davison, 2014. "Space–time modelling of extreme events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 439-461, March.
    2. M. E. Robinson & J. A. Tawn, 2000. "Extremal analysis of processes sampled at different frequencies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 117-135.
    3. S. G. Walker, 2000. "A Note on the Innovation Distribution of a Gamma Distributed Autoregressive Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(3), pages 575-576, September.
    4. Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.
    5. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    6. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    7. Paola Bortot & Carlo Gaetan, 2014. "A Latent Process Model for Temporal Extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 606-621, September.
    8. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    2. Valentin Courgeau & Almut E.D. Veraart, 2022. "Asymptotic theory for the inference of the latent trawl model for extreme values," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1448-1495, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
    2. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    3. Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
    4. Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
    5. Paola Bortot & Carlo Gaetan, 2014. "A Latent Process Model for Temporal Extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 606-621, September.
    6. Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
    7. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    8. Murphy-Barltrop, C.J.R. & Wadsworth, J.L., 2024. "Modelling non-stationarity in asymptotically independent extremes," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    9. Qiurong Cui & Zhengjun Zhang, 2018. "Max-Linear Competing Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 62-74, January.
    10. John G. Galbraith & Serguei Zernov, 2006. "Extreme Dependence In The Nasdaq And S&P Composite Indexes," Departmental Working Papers 2006-14, McGill University, Department of Economics.
    11. Ross Towe & Jonathan Tawn & Emma Eastoe & Rob Lamb, 2020. "Modelling the Clustering of Extreme Events for Short-Term Risk Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 32-53, March.
    12. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    13. Jonathan Jalbert & Anne-Catherine Favre & Claude Bélisle & Jean-François Angers, 2017. "A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 941-962, November.
    14. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    15. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    16. Ibrahim Ergen, 2014. "Tail dependence and diversification benefits in emerging market stocks: an extreme value theory approach," Applied Economics, Taylor & Francis Journals, vol. 46(19), pages 2215-2227, July.
    17. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    18. Moosup Kim & Sangyeol Lee, 2022. "Maximum composite likelihood estimation for spatial extremes models of Brown–Resnick type with application to precipitation data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1023-1059, September.
    19. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    20. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:21:y:2016:i:3:d:10.1007_s13253-016-0254-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.