IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i2ne2658.html
   My bibliography  Save this article

A parametric model for distributions with flexible behavior in both tails

Author

Listed:
  • Michael L. Stein

Abstract

For many problems of inference about a marginal distribution function, while the entire distribution is important, extreme quantiles are of particular interest because rare outcomes may have large consequences. In some applications, only the extreme upper quantiles require extra attention, but in, for example, climatological applications, extremes in both tails of the distribution can be impactful. A possible approach in this setting is to use parametric families of distributions that have flexible behavior in both tails. One way to quantify this property is to require that, for any two generalized Pareto distributions, there is a member of the parametric family that behaves like one of the generalized Pareto distributions in the upper tail and like the negative of the other generalized Pareto distribution in the lower tail. This work proposes some specific quantifications of this notion and describes parametric families of distributions that satisfy these specifications. The proposed families all have closed form expressions for their densities and, hence, are convenient for use in practice. A simulation study shows how one of the proposed families can work well for estimating all quantiles when both tails of a distribution are heavy tailed. An application to climate model output shows this family can also work well when applied to daily average January temperature near Calgary, for which the evolving distribution over time due to climate change is difficult to model accurately by any standard parametric family.

Suggested Citation

  • Michael L. Stein, 2021. "A parametric model for distributions with flexible behavior in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:2:n:e2658
    DOI: 10.1002/env.2658
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2658
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    2. Paul Sharkey & Hugo C. Winter, 2019. "A Bayesian spatial hierarchical model for extreme precipitation in Great Britain," Environmetrics, John Wiley & Sons, Ltd., vol. 30(1), February.
    3. M. L. Stein, 2017. "Should annual maximum temperatures follow a generalized extreme value distribution?," Biometrika, Biometrika Trust, vol. 104(1), pages 1-16.
    4. J. Møller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
    5. Whitney K. Huang & Douglas W. Nychka & Hao Zhang, 2019. "Estimating precipitation extremes using the log‐histospline," Environmetrics, John Wiley & Sons, Ltd., vol. 30(4), June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. André, L.M. & Wadsworth, J.L. & O'Hagan, A., 2024. "Joint modelling of the body and tail of bivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    2. Philémon Gamet & Jonathan Jalbert, 2022. "A flexible extended generalized Pareto distribution for tail estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    3. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    4. Shafique Ur Rehman & Touqeer Ahmad & Wu Dash Desheng & Amirhossein Karamoozian, 2024. "Analyzing selected cryptocurrencies spillover effects on global financial indices: Comparing risk measures using conventional and eGARCH-EVT-Copula approaches," Papers 2407.15766, arXiv.org.
    5. M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
    6. Silius M. Vandeskog & Thordis L. Thorarinsdottir & Ingelin Steinsland & Finn Lindgren, 2022. "Quantile based modeling of diurnal temperature range with the five‐parameter lambda distribution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    7. Julie Bessac & Robert Underwood & Sheng Di, 2023. "Discussion on “Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 358-364, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    2. Carlynn Fagnant & Avantika Gori & Antonia Sebastian & Philip B. Bedient & Katherine B. Ensor, 2020. "Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1597-1621, November.
    3. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    4. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    5. Hashorva, Enkelejd & Ling, Chengxiu & Peng, Zuoxiang, 2014. "Second-order tail asymptotics of deflated risks," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 88-101.
    6. Mao, Tiantian & Stupfler, Gilles & Yang, Fan, 2023. "Asymptotic properties of generalized shortfall risk measures for heavy-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 173-192.
    7. Bormann, Carsten & Schienle, Melanie & Schaumburg, Julia, 2014. "Beyond dimension two: A test for higher-order tail risk," SFB 649 Discussion Papers 2014-042, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    9. Philémon Gamet & Jonathan Jalbert, 2022. "A flexible extended generalized Pareto distribution for tail estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    10. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    11. Max J. Pachali & Peter Kurz & Thomas Otter, 2020. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 343-380, December.
    12. Victor Korolev & Andrey Gorshenin, 2020. "Probability Models and Statistical Tests for Extreme Precipitation Based on Generalized Negative Binomial Distributions," Mathematics, MDPI, vol. 8(4), pages 1-30, April.
    13. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    14. C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
    15. Lombardi, Marco J. & Nicoletti, Giulio, 2012. "Bayesian prior elicitation in DSGE models: Macro- vs micropriors," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 294-313.
    16. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    17. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    18. Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
    19. repec:dau:papers:123456789/5724 is not listed on IDEAS
    20. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    21. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:2:n:e2658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.