Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2012.08.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S. Mase & J. Møller & D. Stoyan & R. Waagepetersen & G. Döge, 2001. "Packing Densities and Simulated Tempering for Hard Core Gibbs Point Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 661-680, December.
- Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
- van Lieshout, M.N.M. & Stoica, R.S., 2006. "Perfect simulation for marked point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 679-698, November.
- Linda Stougaard Nielsen & Eva B. Vedel Jensen, 2004. "Statistical Inference for Transformation Inhomogeneous Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(1), pages 131-142, March.
- Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
- J. Møller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
- Bognar, Matthew A., 2005. "Bayesian inference for spatially inhomogeneous pairwise interacting point processes," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 1-18, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Paul B. May & Andrew O. Finley & Ralph O. Dubayah, 2024. "A Spatial Mixture Model for Spaceborne Lidar Observations Over Mixed Forest and Non-forest Land Types," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 671-694, December.
- David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
- Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
- Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Bolin, David & Lindgren, Finn, 2013. "A comparison between Markov approximations and other methods for large spatial data sets," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 7-21.
- Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
- Jonas Wallin & David Bolin, 2015. "Geostatistical Modelling Using Non-Gaussian Matérn Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 872-890, September.
- Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
- Peter J. Diggle & Emanuele Giorgi, 2016. "Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1096-1120, July.
- Christopher J. Geoga & Mihai Anitescu & Michael L. Stein, 2021. "Flexible nonstationary spatiotemporal modeling of high‐frequency monitoring data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
- Jin, Ick Hoon & Liang, Faming, 2014. "Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 402-416.
- Ninna Vihrs & Jesper Møller & Alan E. Gelfand, 2022. "Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 185-210, March.
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
- Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
- Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
- Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
- Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
- Del Negro, Marco & Schorfheide, Frank, 2008.
"Forming priors for DSGE models (and how it affects the assessment of nominal rigidities),"
Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
- Marco Del Negro & Frank Schorfheide, 2006. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," FRB Atlanta Working Paper 2006-16, Federal Reserve Bank of Atlanta.
- Marco Del Negro & Frank Schorfheide, 2008. "Forming Priors for DSGE Models (and How it Affects the Assessment of Nominal Rigidities)," NBER Working Papers 13741, National Bureau of Economic Research, Inc.
- Del Negro, Marco & Schorfheide, Frank, 2007. "Forming Priors for DSGE Models (and How It Affects the Assessment of Nominal Rigidities)," CEPR Discussion Papers 6119, C.E.P.R. Discussion Papers.
- Marco Del Negro & Frank Schorfheide, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Staff Reports 320, Federal Reserve Bank of New York.
- Frank Schorfheide & Marco Del Negro, 2007. "Forming Priors for DSGE Models (and How It Affects the Assessment of Nominal Rigidities)," 2007 Meeting Papers 283, Society for Economic Dynamics.
More about this item
Keywords
Hard-core point process; Inhomogeneous; Gaussian process regularisation; Bayesian analysis; Sand Martin’s nests;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:530-541. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.