IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v56y2014icp88-101.html
   My bibliography  Save this article

Second-order tail asymptotics of deflated risks

Author

Listed:
  • Hashorva, Enkelejd
  • Ling, Chengxiu
  • Peng, Zuoxiang

Abstract

Random deflation of risk models is an interesting topic for both theoretical and practical actuarial problems. In this paper, we investigate second-order tail asymptotics of the deflated risk X=RS under the assumptions of second-order regular variation on the survival functions of the risk R and the deflator S. Our findings are applied to derive second-order expansions of Value-at-Risk. Further we investigate the estimation of small tail probability for deflated risks and then discuss the asymptotics of the aggregated deflated risk.

Suggested Citation

  • Hashorva, Enkelejd & Ling, Chengxiu & Peng, Zuoxiang, 2014. "Second-order tail asymptotics of deflated risks," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 88-101.
  • Handle: RePEc:eee:insuma:v:56:y:2014:i:c:p:88-101
    DOI: 10.1016/j.insmatheco.2014.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714000419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    2. Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
    3. Beirlant, J. & Dierckx, G. & Guillou, A., 2011. "Bias-reduced estimators for bivariate tail modelling," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 18-26, July.
    4. Zhu, Li & Li, Haijun, 2012. "Tail distortion risk and its asymptotic analysis," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 115-121.
    5. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    6. Enkelejd Hashorva & Anthony G. Pakes & Qihe Tang, 2010. "Asymptotics of Random Contractions," Papers 1008.0126, arXiv.org.
    7. Yang, Yang & Hashorva, Enkelejd, 2013. "Extremes and products of multivariate AC-product risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 312-319.
    8. Mao, Tiantian & Hu, Taizhong, 2012. "Second-order properties of the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 333-343.
    9. Hashorva, Enkelejd & Pakes, Anthony G. & Tang, Qihe, 2010. "Asymptotics of random contractions," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 405-414, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, Chengxiu & Peng, Zuoxiang, 2016. "Tail asymptotics of generalized deflated risks with insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 220-231.
    2. Prieto, Marc & Caemmerer, Barbara & Baltas, George, 2015. "Using a hedonic price model to test prospect theory assertions: The asymmetrical and nonlinear effect of reliability on used car prices," Journal of Retailing and Consumer Services, Elsevier, vol. 22(C), pages 206-212.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling, Chengxiu & Peng, Zuoxiang, 2016. "Tail asymptotics of generalized deflated risks with insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 220-231.
    2. Mao, Tiantian & Stupfler, Gilles & Yang, Fan, 2023. "Asymptotic properties of generalized shortfall risk measures for heavy-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 173-192.
    3. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    4. Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
    5. Samuel Drapeau & Mekonnen Tadese, 2019. "Dual Representation of Expectile based Expected Shortfall and Its Properties," Papers 1911.03245, arXiv.org.
    6. Samuel Drapeau & Mekonnen Tadese, 2019. "Relative Bound and Asymptotic Comparison of Expectile with Respect to Expected Shortfall," Papers 1906.09729, arXiv.org, revised Jun 2020.
    7. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    8. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    9. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
    10. Yang, Yang & Hashorva, Enkelejd, 2013. "Extremes and products of multivariate AC-product risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 312-319.
    11. Liu, Qing & Peng, Liang & Wang, Xing, 2017. "Haezendonck–Goovaerts risk measure with a heavy tailed loss," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 28-47.
    12. Wei, Li & Yuan, Zhongyi, 2016. "The loss given default of a low-default portfolio with weak contagion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 113-123.
    13. Tang, Qihe & Yang, Fan, 2014. "Extreme value analysis of the Haezendonck–Goovaerts risk measure with a general Young function," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 311-320.
    14. Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
    15. Wang, Xing & Peng, Liang, 2016. "Inference for intermediate Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 231-240.
    16. Mao, Tiantian & Yang, Fan, 2015. "Risk concentration based on Expectiles for extreme risks under FGM copula," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 429-439.
    17. Hashorva, Enkelejd & Li, Jinzhu, 2013. "ECOMOR and LCR reinsurance with gamma-like claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 206-215.
    18. Mao, Tiantian & Hu, Taizhong, 2012. "Second-order properties of the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 333-343.
    19. Xun, Li & Zhou, Yangzhi & Zhou, Yong, 2019. "A generalization of Expected Shortfall based capital allocation," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 193-199.
    20. N. Balakrishnan & A. Stepanov, 2014. "On the Use of Bivariate Mellin Transform in Bivariate Random Scaling and Some Applications," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 235-244, March.

    More about this item

    Keywords

    Random deflation; Value-at-Risk; Risk aggregation; Second-order regular variation; Estimation of tail probability;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:56:y:2014:i:c:p:88-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.