IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2014-042.html
   My bibliography  Save this paper

Beyond dimension two: A test for higher-order tail risk

Author

Listed:
  • Bormann, Carsten
  • Schienle, Melanie
  • Schaumburg, Julia

Abstract

In practice, multivariate dependencies between extreme risks are often only assessed in a pairwise way. We propose a test to detect when tail dependence is truly high{dimensional and bivariate simpli cations would produce misleading results. This occurs when a signi cant portion of the multivariate dependence structure in the tails is of higher dimension than two. Our test statistic is based on a decomposition of the stable tail dependence function, which is standard in extreme value theory for describing multivariate tail dependence. The asymptotic properties of the test are provided and a bootstrap based nite sample version of the test is suggested. A simulation study documents the good performance of the test for standard sample sizes. In an application to international government bonds, we detect a high tail{risk and low return situation during the last decade which can essentially be attributed to increased higher-order tail risk. We also illustrate the empirical consequences from ignoring higher-dimensional tail risk.

Suggested Citation

  • Bormann, Carsten & Schienle, Melanie & Schaumburg, Julia, 2014. "Beyond dimension two: A test for higher-order tail risk," SFB 649 Discussion Papers 2014-042, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2014-042
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/103804/1/796721505.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. P. Hartmann & S. Straetmans & C. G. de Vries, 2004. "Asset Market Linkages in Crisis Periods," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 313-326, February.
    2. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    3. Einmahl, J.H.J. & Krajina, A. & Segers, J.J.J., 2007. "A Method of Moments Estimator of Tail Dependence," Other publications TiSEM 6ee60ab8-3c01-4bd9-aa5e-7, Tilburg University, School of Economics and Management.
    4. Bucher, Axel & Segers, Johan & Volgushev, Stanislav, 2014. "When uniform weak convergence fails: empirical processes for dependence functions via epi- and hypographs," LIDAM Reprints ISBA 2014018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    6. Geluk, J.L. & de Haan, L.F.M., 2002. "On bootstrap sample size in extreme value theory," Econometric Institute Research Papers EI 2002-40, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. S. T. M. Straetmans & W. F. C. Verschoor & C. C. P. Wolff, 2008. "Extreme US stock market fluctuations in the wake of 9|11," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 17-42.
    8. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    9. Segers, Johan, 2012. "Max-stable models for multivariate extremes," LIDAM Reprints ISBA 2012012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Peter Christoffersen & Vihang Errunza & Kris Jacobs & Hugues Langlois, 2012. "Is the Potential for International Diversification Disappearing? A Dynamic Copula Approach," The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3711-3751.
    11. de Haan, Laurens & Neves, Cláudia & Peng, Liang, 2008. "Parametric tail copula estimation and model testing," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1260-1275, July.
    12. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2006. "Weighted approximations of tail copula processes with applications to testing the bivariate extreme value condition," Other publications TiSEM 18b65ac3-ba79-4bff-ad53-2, Tilburg University, School of Economics and Management.
    13. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    14. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    15. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    16. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    17. Segers, Johan, 2012. "Max-Stable Models For Multivariate Extremes," LIDAM Discussion Papers ISBA 2012011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    19. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 125-154.
    20. Einmahl, John H. J. & Li, Jun & Liu, Regina Y., 2009. "Thresholding Events of Extreme in Simultaneous Monitoring of Multiple Risks," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 982-992.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lien, Donald & Lee, Geul & Yang, Li & Zhang, Yuyin, 2018. "Volatility spillovers among the U.S. and Asian stock markets: A comparison between the periods of Asian currency crisis and subprime credit crisis," The North American Journal of Economics and Finance, Elsevier, vol. 46(C), pages 187-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carsten Bormann & Melanie Schienle, 2020. "Detecting Structural Differences in Tail Dependence of Financial Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 380-392, April.
    2. Carsten Bormann & Melanie Schienle & Julia Schaumburg, 2014. "A Test for the Portion of Bivariate Dependence in Multivariate Tail Risk," Tinbergen Institute Discussion Papers 14-024/III, Tinbergen Institute, revised 23 Jun 2014.
    3. repec:hum:wpaper:sfb649dp2014-042 is not listed on IDEAS
    4. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
    5. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    6. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.
    7. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Herrera, R. & Eichler, S., 2011. "Extreme dependence with asymmetric thresholds: Evidence for the European Monetary Union," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2916-2930, November.
    9. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    10. Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
    11. Kiriliouk, Anna & Segers, Johan & Warchol, Michal, 2014. "Nonparametric estimation of extremal dependence," LIDAM Discussion Papers ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Reboredo, Juan C., 2012. "Do food and oil prices co-move?," Energy Policy, Elsevier, vol. 49(C), pages 456-467.
    13. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
    14. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    15. Wu, Chih-Chiang & Chiu, Junmao, 2017. "Economic evaluation of asymmetric and price range information in gold and general financial markets," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 53-68.
    16. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    17. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    18. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Ruenzi, Stefan & Ungeheuer, Michael & Weigert, Florian, 2020. "Joint Extreme events in equity returns and liquidity and their cross-sectional pricing implications," Journal of Banking & Finance, Elsevier, vol. 115(C).
    21. Chollete, Loran & Ning, Cathy, 2009. "The Dependence Structure of Macroeconomic Variables in the US," UiS Working Papers in Economics and Finance 2009/31, University of Stavanger.

    More about this item

    Keywords

    decomposition of tail dependence; multivariate extreme values; stable tail dependence function; subsample bootstrap; tail correlation;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2014-042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.