IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v28y2023i2d10.1007_s13253-023-00540-7.html
   My bibliography  Save this article

Discussion on “Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach”

Author

Listed:
  • Julie Bessac

    (Computational Science Center)

  • Robert Underwood

    (Computational Science Center)

  • Sheng Di

    (Computational Science Center)

Abstract

We thank the authors for this interesting paper that highlights important ideas and concepts for the future of climate model ensembles and their storage, as well as future uses of stochastic emulators. Stochastic emulators are particularly relevant because of the statistical nature of climate model ensembles, as discussed in previous work of the authors (Castruccio et al. in J Clim 32:8511–8522, 2019; Hu and Castruccio in J Clim 34:8409–8418, 2021). We thank the authors for sharing of some of their data with us in order to illustrate this discussion. In the following, in Sect. 1 we discuss alternative techniques currently used and studied, namely lossy compression and ideas emerging from the climate modeling community, that could feed the discussion on ensemble and storage. In that section, we also present numerical results of compression performed on the data shared by the authors. In Sect. 2, we discuss the current statistical model proposed by the authors and its context. We discuss other potential uses of stochastic emulators in climate and Earth modeling.

Suggested Citation

  • Julie Bessac & Robert Underwood & Sheng Di, 2023. "Discussion on “Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 358-364, June.
  • Handle: RePEc:spr:jagbes:v:28:y:2023:i:2:d:10.1007_s13253-023-00540-7
    DOI: 10.1007/s13253-023-00540-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00540-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00540-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Tencaliec & A.‐C. Favre & P. Naveau & C. Prieur & G. Nicolet, 2020. "Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount," Environmetrics, John Wiley & Sons, Ltd., vol. 31(2), March.
    2. Michael L. Stein, 2021. "A parametric model for distributions with flexible behaviour in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    3. Michael L. Stein, 2021. "A parametric model for distributions with flexible behavior in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philémon Gamet & Jonathan Jalbert, 2022. "A flexible extended generalized Pareto distribution for tail estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    2. André, L.M. & Wadsworth, J.L. & O'Hagan, A., 2024. "Joint modelling of the body and tail of bivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    3. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    4. Silius M. Vandeskog & Thordis L. Thorarinsdottir & Ingelin Steinsland & Finn Lindgren, 2022. "Quantile based modeling of diurnal temperature range with the five‐parameter lambda distribution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    5. M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
    6. Shafique Ur Rehman & Touqeer Ahmad & Wu Dash Desheng & Amirhossein Karamoozian, 2024. "Analyzing selected cryptocurrencies spillover effects on global financial indices: Comparing risk measures using conventional and eGARCH-EVT-Copula approaches," Papers 2407.15766, arXiv.org.
    7. Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    8. Chunli Huang & Xu Zhao & Weihu Cheng & Qingqing Ji & Qiao Duan & Yufei Han, 2022. "Statistical Inference of Dynamic Conditional Generalized Pareto Distribution with Weather and Air Quality Factors," Mathematics, MDPI, vol. 10(9), pages 1-25, April.
    9. Kangyi Li & Yang Zhou, 2024. "Improved Financial Predicting Method Based on Time Series Long Short-Term Memory Algorithm," Mathematics, MDPI, vol. 12(7), pages 1-17, April.
    10. Dacorogna, Michel & Debbabi, Nehla & Kratz, Marie, 2023. "Building up cyber resilience by better grasping cyber risk via a new algorithm for modelling heavy-tailed data," European Journal of Operational Research, Elsevier, vol. 311(2), pages 708-729.
    11. Xiaoting Li & Christian Genest & Jonathan Jalbert, 2021. "A self‐exciting marked point process model for drought analysis," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:28:y:2023:i:2:d:10.1007_s13253-023-00540-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.