IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i3p691-707..html
   My bibliography  Save this article

Bayesian spatial monotonic multiple regression

Author

Listed:
  • C Rohrbeck
  • D A Costain
  • A Frigessi

Abstract

SummaryWe consider monotonic, multiple regression for contiguous regions. The regression functions vary regionally and may exhibit spatial structure. We develop Bayesian nonparametric methodology that permits estimation of both continuous and discontinuous functional shapes using marked point process and reversible jump Markov chain Monte Carlo techniques. Spatial dependence is incorporated by a flexible prior distribution which is tuned using crossvalidation and Bayesian optimization. We derive the mean and variance of the prior induced by the marked point process approach. Asymptotic results show consistency of the estimated functions. Posterior realizations enable variable selection, the detection of discontinuities and prediction. In simulations and in an application to a Norwegian insurance dataset, our method shows better performance than existing approaches.

Suggested Citation

  • C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:3:p:691-707.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. O. Ramsay, 1998. "Estimating smooth monotone functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 365-375.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Thomas S. Shively & Thomas W. Sager & Stephen G. Walker, 2009. "A Bayesian approach to non‐parametric monotone function estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 159-175, January.
    4. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    5. J. G. Scott & T. S. Shively & S. G. Walker, 2015. "Nonparametric Bayesian testing for monotonicity," Biometrika, Biometrika Trust, vol. 102(3), pages 617-630.
    6. Lizhen Lin & David B. Dunson, 2014. "Bayesian monotone regression using Gaussian process projection," Biometrika, Biometrika Trust, vol. 101(2), pages 303-317.
    7. Ida Scheel & Egil Ferkingstad & Arnoldo Frigessi & Ola Haug & Mikkel Hinnerichsen & Elisabeth Meze-Hausken, 2013. "A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(1), pages 85-100, January.
    8. Marian Farah & Athanasios Kottas & Robin D. Morris, 2013. "An application of semiparametric Bayesian isotonic regression to the study of radiation effects in spaceborne microelectronics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(1), pages 3-24, January.
    9. Stephen Walker & Nils Lid Hjort, 2001. "On Bayesian consistency," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 811-821.
    10. Bergersen, Linn Cecilie & Tharmaratnam, Kukatharmini & Glad, Ingrid K., 2014. "Monotone splines lasso," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 336-351.
    11. J. Møller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
    12. Ander Wilson & David M. Reif & Brian J. Reich, 2014. "Hierarchical dose–response modeling for high-throughput toxicity screening of environmental chemicals," Biometrics, The International Biometric Society, vol. 70(1), pages 237-246, March.
    13. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    14. Olli Saarela & Elja Arjas, 2011. "A Method for Bayesian Monotonic Multiple Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 499-513, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taeryon Choi & Hea-Jung Kim & Seongil Jo, 2016. "Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2751-2771, November.
    2. Shively, Thomas S. & Kockelman, Kara & Damien, Paul, 2010. "A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 699-715, June.
    3. Solaiman Afroughi & Soghrat Faghihzadeh & Majid Jafari Khaledi & Mehdi Ghandehari Motlagh & Ebrahim Hajizadeh, 2011. "Analysis of clustered spatially correlated binary data using autologistic model and Bayesian method with an application to dental caries of 3--5-year-old children," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2763-2774, February.
    4. Christophe Abraham & Khader Khadraoui, 2015. "Bayesian regression with B-splines under combinations of shape constraints and smoothness properties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(2), pages 150-170, May.
    5. Hazelton, Martin L. & Turlach, Berwin A., 2011. "Semiparametric regression with shape-constrained penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2871-2879, October.
    6. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    7. Gabriel Riutort-Mayol & Virgilio Gómez-Rubio & José Luis Lerma & Julio M. del Hoyo-Meléndez, 2020. "Correlated Functional Models with Derivative Information for Modeling Microfading Spectrometry Data on Rock Art Paintings," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    8. Thomas S. Shively & Thomas W. Sager & Stephen G. Walker, 2009. "A Bayesian approach to non‐parametric monotone function estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 159-175, January.
    9. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    10. Lee, Dae-Jin & Durbán, María, 2008. "Smooth-car mixed models for spatial count data," DES - Working Papers. Statistics and Econometrics. WS ws085820, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Yang Liu & Xiaojing Wang, 2020. "Bayesian Nonparametric Monotone Regression of Dynamic Latent Traits in Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 274-296, June.
    12. Lee, Dae-Jin & Durbán, María, 2009. "Smooth-CAR mixed models for spatial count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2968-2979, June.
    13. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    14. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    15. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    16. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    17. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    18. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    19. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    20. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:3:p:691-707.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.