IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v18y2020i4d10.1007_s11129-020-09226-7.html
   My bibliography  Save this article

How to generalize from a hierarchical model?

Author

Listed:
  • Max J. Pachali

    (Tilburg University)

  • Peter Kurz

    (bms marketing research + strategy GmbH)

  • Thomas Otter

    (Goethe University Frankfurt)

Abstract

Models of consumer heterogeneity play a pivotal role in marketing and economics, specifically in random coefficient or mixed logit models for aggregate or individual data and in hierarchical Bayesian models of heterogeneity. In applications, the inferential target often pertains to a population beyond the sample of consumers providing the data. For example, optimal prices inferred from the model are expected to be optimal in the population and not just optimal in the observed, finite sample. The population model, random coefficients distribution, or heterogeneity distribution is the natural and correct basis for generalizations from the observed sample to the market. However, in many if not most applications standard heterogeneity models such as the multivariate normal, or its finite mixture generalization lack economic rationality because they support regions of the parameter space that contradict basic economic arguments. For example, such population distributions support positive price coefficients or preferences against fuel-efficiency in cars. Likely as a consequence, it is common practice in applied research to rely on the collection of individual level mean estimates of consumers as a representation of population preferences that often substantially reduce the support for parameters in violation of economic expectations. To overcome the choice between relying on a mis-specified heterogeneity distribution and the collection of individual level means that fail to measure heterogeneity consistently, we develop an approach that facilitates the formulation of more economically faithful heterogeneity distributions based on prior constraints. In the common situation where the heterogeneity distribution comprises both constrained and unconstrained coefficients (e.g., brand and price coefficients), the choice of subjective prior parameters is an unresolved challenge. As a solution to this problem, we propose a marginal-conditional decomposition that avoids the conflict between wanting to be more informative about constrained parameters and only weakly informative about unconstrained parameters. We show how to efficiently sample from the implied posterior and illustrate the merits of our prior as well as the drawbacks of relying on means of individual level preferences for decision-making in two illustrative case studies.

Suggested Citation

  • Max J. Pachali & Peter Kurz & Thomas Otter, 2020. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 343-380, December.
  • Handle: RePEc:kap:qmktec:v:18:y:2020:i:4:d:10.1007_s11129-020-09226-7
    DOI: 10.1007/s11129-020-09226-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11129-020-09226-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11129-020-09226-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    2. Yang Li & Asim Ansari, 2014. "A Bayesian Semiparametric Approach for Endogeneity and Heterogeneity in Choice Models," Management Science, INFORMS, vol. 60(5), pages 1161-1179, May.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, October.
    4. Marco J. W. Kotschedoff & Max J. Pachali, 2020. "Higher Minimum Quality Standards and Redistributive Effects on Consumer Welfare," Marketing Science, INFORMS, vol. 39(1), pages 253-280, January.
    5. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    6. Peter E. Rossi, 2014. "Bayesian Non- and Semi-parametric Methods and Applications," Economics Books, Princeton University Press, edition 1, number 10259.
    7. J. Møller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
    8. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    9. Jean-Pierre Dubé & Günter J. Hitsch & Peter E. Rossi & Maria Ana Vitorino, 2008. "Category Pricing with State-Dependent Utility," Marketing Science, INFORMS, vol. 27(3), pages 417-429, 05-06.
    10. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    11. Tetyana Kosyakova & Thomas Otter & Sanjog Misra & Christian Neuerburg, 2020. "Exact MCMC for Choices from Menus—Measuring Substitution and Complementarity Among Menu Items," Marketing Science, INFORMS, vol. 39(2), pages 427-447, March.
    12. Greg Allenby & Jeff Brazell & John Howell & Peter Rossi, 2014. "Economic valuation of product features," Quantitative Marketing and Economics (QME), Springer, vol. 12(4), pages 421-456, December.
    13. Jean‐Pierre Dubé & Günter J. Hitsch & Peter E. Rossi, 2010. "State dependence and alternative explanations for consumer inertia," RAND Journal of Economics, RAND Corporation, vol. 41(3), pages 417-445, September.
    14. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    15. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    16. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stetter, Christian & Sauer, Johannes, 2022. "Agroforestry Adoption in the Face of Regional Weather Extremes," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321173, Agricultural Economics Society - AES.
    2. Roman Inderst & Eftichios S. Sartzetakis & Anastasios Xepapadeas, 2023. "Firm Competition and Cooperation with Norm‐Based Preferences for Sustainability," Journal of Industrial Economics, Wiley Blackwell, vol. 71(4), pages 1038-1071, December.
    3. Kim, Youngju & Hardt, Nino & Kim, Jaehwan & Allenby, Greg M., 2022. "Conjunctive screening in models of multiple discreteness," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 1209-1234.
    4. Bruno Jacobs & Dennis Fok & Bas Donkers, 2021. "Understanding Large-Scale Dynamic Purchase Behavior," Marketing Science, INFORMS, vol. 40(5), pages 844-870, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max J. Pachali & Peter Kurz & Thomas Otter, 0. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 0, pages 1-38.
    2. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    3. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    4. Lynd Bacon & Peter Lenk, 2012. "Augmenting discrete-choice data to identify common preference scales for inter-subject analyses," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 453-474, December.
    5. Adithya Pattabhiramaiah & S. Sriram & Shrihari Sridhar, 2018. "Rising Prices Under Declining Preferences: The Case of the U.S. Print Newspaper Industry," Marketing Science, INFORMS, vol. 37(1), pages 97-122, January.
    6. Weber, Anett & Steiner, Winfried J., 2021. "Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity," European Journal of Operational Research, Elsevier, vol. 294(3), pages 843-859.
    7. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    8. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    9. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    10. Greg M. Allenby & Jeff Brazell & John R. Howell & Peter E. Rossi, 2014. "Valuation of Patented Product Features," Journal of Law and Economics, University of Chicago Press, vol. 57(3), pages 629-663.
    11. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    12. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    13. Olga Novikova & Dmitriy B. Potapov, 2015. "Empirical Analysis of Consumer Purchase Behavior: Interaction between State Dependence and Sensitivity to Marketing-Mix Variables," HSE Working papers WP BRP 48/MAN/2015, National Research University Higher School of Economics.
    14. Federico Ciliberto & GianCarlo Moschini & Edward D. Perry, 2019. "Valuing product innovation: genetically engineered varieties in US corn and soybeans," RAND Journal of Economics, RAND Corporation, vol. 50(3), pages 615-644, September.
    15. YiChun Miriam Liu & Jeff D. Brazell & Greg M. Allenby, 2022. "Non-linear pricing effects in conjoint analysis," Quantitative Marketing and Economics (QME), Springer, vol. 20(4), pages 397-430, December.
    16. Leard, Benjamin, 2018. "Consumer inattention and the demand for vehicle fuel cost savings," Journal of choice modelling, Elsevier, vol. 29(C), pages 1-16.
    17. Martin, Elliott William, 2009. "New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax," University of California Transportation Center, Working Papers qt5gd206wv, University of California Transportation Center.
    18. Martin, Elliot William, 2009. "New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax," University of California Transportation Center, Working Papers qt6sz198c2, University of California Transportation Center.
    19. Haucap, Justus & Heimeshoff, Ulrich & Klein, Gordon J. & Rickert, Dennis & Wey, Christian, 2021. "Vertical relations, pass-through, and market definition: Evidence from grocery retailing," International Journal of Industrial Organization, Elsevier, vol. 74(C).
    20. Robert Donnelly & Francisco J.R. Ruiz & David Blei & Susan Athey, 2021. "Counterfactual inference for consumer choice across many product categories," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 369-407, December.

    More about this item

    Keywords

    Discrete choice; Bayesian inference; Market simulation; Constrained hierarchical prior;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:18:y:2020:i:4:d:10.1007_s11129-020-09226-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.