IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i3d10.1007_s11269-022-03063-x.html
   My bibliography  Save this article

Medium and Long-term Precipitation Prediction Using Wavelet Decomposition-prediction-reconstruction Model

Author

Listed:
  • Yongtao Wang

    (Hunan University
    Guizhou Institute of Water Resources Science)

  • Jian Liu

    (Hunan University)

  • Rong Li

    (Hunan University)

  • Xinyu Suo

    (Hunan University)

  • EnHui Lu

    (Hunan University)

Abstract

To improve the accuracy of medium and long-term precipitation prediction, we propose an innovative application of the wavelet decomposition-prediction-reconstruction model (WDPRM) herein. The model consists of wavelet decomposition, a particle swarm optimization support vector machine (PSO-SVM), and an artificial bee colony algorithm-optimized BP neural network (ABC-BP). First, the wavelet decomposition method is used to decompose the non-stationary precipitation time series into multiple decomposition terms with different frequencies. Second, the high-frequency component is predicted and verified by a PSO-SVM, while the low-frequency component is predicted and verified by the ABC-BP. Thirdly, the prediction results of the high- and low-frequency components are superimposed to obtain the final prediction result. The validity of the WDPRM is verified by using precipitation data from the Wujiang River Basin in Guizhou Province from 1961 to 2018. Compared to single prediction methods using BP or PSO, the WDPRM has the advantages of low mean absolute percentage error (MAPE) and root mean square error (RMSE), high $$\alpha$$ α and $$\Omega$$ Ω , and higher prediction accuracy. The precipitation forecast, and drought assessment for the next 10 years (2019–2028), have been completed. This research can effectively guide regional flood control, drought relief, and water resource allocation and dispatch.

Suggested Citation

  • Yongtao Wang & Jian Liu & Rong Li & Xinyu Suo & EnHui Lu, 2022. "Medium and Long-term Precipitation Prediction Using Wavelet Decomposition-prediction-reconstruction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 971-987, February.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03063-x
    DOI: 10.1007/s11269-022-03063-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03063-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03063-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaher Mundher Yaseen & Minglei Fu & Chen Wang & Wan Hanna Melini Wan Mohtar & Ravinesh C. Deo & Ahmed El-shafie, 2018. "Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1883-1899, March.
    2. Adnan Bashir & Muhammad Ahmed Shehzad & Ijaz Hussain & Muhammad Ishaq Asif Rehmani & Sajjad Haider Bhatti, 2019. "Reservoir Inflow Prediction by Ensembling Wavelet and Bootstrap Techniques to Multiple Linear Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5121-5136, December.
    3. Yan-Fang Sang, 2012. "A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3345-3365, September.
    4. Xin Liu & Xuefeng Sang & Jiaxuan Chang & Yang Zheng, 2021. "Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4021-4041, September.
    5. Erhao Meng & Shengzhi Huang & Qiang Huang & Wei Fang & Hao Wang & Guoyong Leng & Lu Wang & Hao Liang, 2021. "A Hybrid VMD-SVM Model for Practical Streamflow Prediction Using an Innovative Input Selection Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1321-1337, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djerbouai Salim & Souag-Gamane Doudja & Ferhati Ahmed & Djoukbala Omar & Dougha Mostafa & Benselama Oussama & Hasbaia Mahmoud, 2023. "Comparative Study of Different Discrete Wavelet Based Neural Network Models for long term Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1401-1420, February.
    2. Haibo Gong & Fusheng Jiao & Li Cao & Huiyu Liu, 2022. "Long-term Precipitation Estimation Combining Time-Series Retrospective Forecasting and Downscaling-Calibration Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3087-3106, July.
    3. Bulent Haznedar & Huseyin Cagan Kilinc, 2022. "A Hybrid ANFIS-GA Approach for Estimation of Hydrological Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4819-4842, September.
    4. Shengli Liao & Huan Wang & Benxi Liu & Xiangyu Ma & Binbin Zhou & Huaying Su, 2023. "Runoff Forecast Model Based on an EEMD-ANN and Meteorological Factors Using a Multicore Parallel Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1539-1555, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafiza Mamona Nazir & Ijaz Hussain & Muhammad Faisal & Alaa Mohamd Shoukry & Showkat Gani & Ishfaq Ahmad, 2019. "Development of Multidecomposition Hybrid Model for Hydrological Time Series Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, January.
    2. Haijiao Yu & Xiaohu Wen & Qi Feng & Ravinesh C. Deo & Jianhua Si & Min Wu, 2018. "Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 301-323, January.
    3. Icen Yoosefdoost & Abbas Khashei-Siuki & Hossein Tabari & Omolbani Mohammadrezapour, 2022. "Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1191-1215, March.
    4. Jianhua Xu & Yaning Chen & Weihong Li & Qin Nie & Chunan Song & Chunmeng Wei, 2014. "Integrating Wavelet Analysis and BPANN to Simulate the Annual Runoff With Regional Climate Change: A Case Study of Yarkand River, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2523-2537, July.
    5. Erhao Meng & Shengzhi Huang & Qiang Huang & Linyin Cheng & Wei Fang, 2021. "The Reconstruction and Extension of Terrestrial Water Storage Based on a Combined Prediction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5291-5306, December.
    6. Alpaslan Yarar, 2014. "A Hybrid Wavelet and Neuro-Fuzzy Model for Forecasting the Monthly Streamflow Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 553-565, January.
    7. Salim Djerbouai & Doudja Souag-Gamane, 2016. "Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Stochastic Models: Case of the Algerois Basin in North Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2445-2464, May.
    8. Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.
    9. Fatemeh Bakhshi Ostadkalayeh & Saba Moradi & Ali Asadi & Alireza Moghaddam Nia & Somayeh Taheri, 2023. "Performance Improvement of LSTM-based Deep Learning Model for Streamflow Forecasting Using Kalman Filtering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3111-3127, June.
    10. Djerbouai Salim & Souag-Gamane Doudja & Ferhati Ahmed & Djoukbala Omar & Dougha Mostafa & Benselama Oussama & Hasbaia Mahmoud, 2023. "Comparative Study of Different Discrete Wavelet Based Neural Network Models for long term Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1401-1420, February.
    11. Uttam Singh & Pramod Kumar Sharma, 2022. "Seasonal Uncertainty Estimation of Surface Nuclear Magnetic Resonance Water Content using Bootstrap Statistics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2493-2508, May.
    12. Pruethsan Sutthichaimethee & Harlida Abdul Wahab, 2021. "A Forecasting Model in Managing Future Scenarios to Achieve the Sustainable Development Goals of Thailand s Environmental Law: Enriching the Path Analysis-VARIMA-OVi Model," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 398-411.
    13. Yan-Fang Sang & Zhonggen Wang & Changming Liu, 2015. "Wavelet Neural Modeling for Hydrologic Time Series Forecasting with Uncertainty Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1789-1801, April.
    14. Yan-Fang Sang, 2013. "Improved Wavelet Modeling Framework for Hydrologic Time Series Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2807-2821, June.
    15. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    16. Wen-chuan Wang & Yu-jin Du & Kwok-wing Chau & Dong-mei Xu & Chang-jun Liu & Qiang Ma, 2021. "An Ensemble Hybrid Forecasting Model for Annual Runoff Based on Sample Entropy, Secondary Decomposition, and Long Short-Term Memory Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4695-4726, November.
    17. Szabolcs Kováč & German Micha’čonok & Igor Halenár & Pavel Važan, 2021. "Comparison of Heat Demand Prediction Using Wavelet Analysis and Neural Network for a District Heating Network," Energies, MDPI, vol. 14(6), pages 1-20, March.
    18. Duong Tran Anh & Thanh Duc Dang & Song Pham Van, 2019. "Improved Rainfall Prediction Using Combined Pre-Processing Methods and Feed-Forward Neural Networks," J, MDPI, vol. 2(1), pages 1-19, February.
    19. Haibo Chu & Jianmin Bian & Qi Lang & Xiaoqing Sun & Zhuoqi Wang, 2022. "Daily Groundwater Level Prediction and Uncertainty Using LSTM Coupled with PMI and Bootstrap Incorporating Teleconnection Patterns Information," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    20. Fang-Fang Li & Han Cao & Chun-Feng Hao & Jun Qiu, 2021. "Daily Streamflow Forecasting Based on Flow Pattern Recognition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4601-4620, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03063-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.