IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1545-d514967.html
   My bibliography  Save this article

Comparison of Heat Demand Prediction Using Wavelet Analysis and Neural Network for a District Heating Network

Author

Listed:
  • Szabolcs Kováč

    (Institute of Applied Informatics, Automation and Mechatronics, Faculty of Materials and Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 02 Trnava, Slovakia)

  • German Micha’čonok

    (Institute of Applied Informatics, Automation and Mechatronics, Faculty of Materials and Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 02 Trnava, Slovakia)

  • Igor Halenár

    (Institute of Applied Informatics, Automation and Mechatronics, Faculty of Materials and Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 02 Trnava, Slovakia)

  • Pavel Važan

    (Institute of Applied Informatics, Automation and Mechatronics, Faculty of Materials and Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 02 Trnava, Slovakia)

Abstract

Short-Term Load Prediction (STLP) is an important part of energy planning. STLP is based on the analysis of historical data such as outdoor temperature, heat load, heat consumer configuration, and the seasons. This research aims to forecast heat consumption during the winter heating season. By preprocessing and analyzing the data, we can determine the patterns in the data. The results of the data analysis make it possible to form learning algorithms for an artificial neural network (ANN). The biggest disadvantage of an ANN is the lack of precise guidelines for architectural design. Another disadvantage is the presence of false information in the analyzed training data. False information is the result of errors in measuring, collecting, and transferring data. Usually, trial error techniques are used to determine the number of hidden nodes. To compare prediction accuracy, several models have been proposed, including a conventional ANN and a wavelet ANN. In this research, the influence of different learning algorithms was also examined. The main differences were the training time and number of epochs. To improve the quality of the raw data and remove false information, the research uses the technology of normalizing raw data. The basis of normalization was the technology of the Z-score of the data and determination of the energy‒entropy ratio. The purpose of this research was to compare the accuracy of various data processing and neural network training algorithms suitable for use in data-driven (black box) modeling. For this research, we used a software application created in the MATLAB environment. The app uses wavelet transforms to compare different heat demand prediction methods. The use of several wavelet transforms for various wavelet functions in the research allowed us to determine the best algorithm and method for predicting heat production. The results of the research show the need to normalize the raw data using wavelet transforms. The sequence of steps involves following milestones: normalization of initial data, wavelet analysis employing quantitative criteria (energy, entropy, and energy‒entropy ratio), optimization of ANN training with information energy–entropy ratio, ANN training with different training algorithms, and evaluation of obtained outputs using statistical methods. The developed application can serve as a control tool for dispatchers during planning.

Suggested Citation

  • Szabolcs Kováč & German Micha’čonok & Igor Halenár & Pavel Važan, 2021. "Comparison of Heat Demand Prediction Using Wavelet Analysis and Neural Network for a District Heating Network," Energies, MDPI, vol. 14(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1545-:d:514967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1545/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1545/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    2. Amjady, N. & Keynia, F., 2009. "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, Elsevier, vol. 34(1), pages 46-57.
    3. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2017. "Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model," Energy, Elsevier, vol. 118(C), pages 231-245.
    4. Yan-Fang Sang, 2012. "A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3345-3365, September.
    5. Kurek, Teresa & Bielecki, Artur & Świrski, Konrad & Wojdan, Konrad & Guzek, Michał & Białek, Jakub & Brzozowski, Rafał & Serafin, Rafał, 2021. "Heat demand forecasting algorithm for a Warsaw district heating network," Energy, Elsevier, vol. 217(C).
    6. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    7. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
    2. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    3. Ahmad, Tanveer & Zhang, Hongcai, 2020. "Novel deep supervised ML models with feature selection approach for large-scale utilities and buildings short and medium-term load requirement forecasts," Energy, Elsevier, vol. 209(C).
    4. Deyun Wang & Yanling Liu & Hongyuan Luo & Chenqiang Yue & Sheng Cheng, 2017. "Day-Ahead PM 2.5 Concentration Forecasting Using WT-VMD Based Decomposition Method and Back Propagation Neural Network Improved by Differential Evolution," IJERPH, MDPI, vol. 14(7), pages 1-22, July.
    5. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    6. Li, Shunxi & Su, Bowen & St-Pierre, David L. & Sui, Pang-Chieh & Zhang, Guofang & Xiao, Jinsheng, 2017. "Decision-making of compressed natural gas station siting for public transportation: Integration of multi-objective optimization, fuzzy evaluating, and radar charting," Energy, Elsevier, vol. 140(P1), pages 11-17.
    7. Haijiao Yu & Xiaohu Wen & Qi Feng & Ravinesh C. Deo & Jianhua Si & Min Wu, 2018. "Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 301-323, January.
    8. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    9. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    10. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    11. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    12. V. Y. Kondaiah & B. Saravanan, 2022. "Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method," Energies, MDPI, vol. 15(14), pages 1-17, July.
    13. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    14. Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
    15. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    16. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    17. Leni Kusmiyati & Anjar Priyono, 2021. "The strategy for combining online and offline business model for MSMEs," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 10(4), pages 406-419, June.
    18. Miloš Božić & Miloš Stojanović & Zoran Stajić & Dragan Tasić, 2013. "A New Two-Stage Approach to Short Term Electrical Load Forecasting," Energies, MDPI, vol. 6(4), pages 1-19, April.
    19. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    20. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1545-:d:514967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.