IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i3d10.1007_s11269-023-03432-0.html
   My bibliography  Save this article

Comparative Study of Different Discrete Wavelet Based Neural Network Models for long term Drought Forecasting

Author

Listed:
  • Djerbouai Salim

    (University of M’sila, Ichebila)

  • Souag-Gamane Doudja

    (University of Science and Technology Houari Boumediene)

  • Ferhati Ahmed

    (University of M’sila, Ichebila)

  • Djoukbala Omar

    (University of M’sila, Ichebila)

  • Dougha Mostafa

    (University of M’sila, Ichebila)

  • Benselama Oussama

    (University of M’sila, Ichebila)

  • Hasbaia Mahmoud

    (University of M’sila, Ichebila)

Abstract

Recently, coupled Wavelet transform and Neural Networks models (WANN) were extensively used in hydrological drought forecasting, which is an important task in drought risk management. Wavelet transforms make forecasting model more accurate, by extracting information from several levels of resolution. The selection of an adequate mother wavelet and optimum decomposition level play an important role for successful implementation of wavelet neural network based hydrologic forecasting models. The main objective of this research is to look into the effects of various discrete wavelet families and the level of decomposition on the performance of WANN drought forecasting models that are developed for forecast drought in the Algerois catchment for long lead time. The Standard Precipitation Index (SPI) is used as a drought measuring parameter at three-, six- and twelve-month scales. Suggested WANN models are tested using 39 discrete mother wavelets derived from five families including Haar, Daubechies, Symlets, Coiflets and the discrete approximation of Meyer. Drought is forecasted by the best model for various lead times varying from 1-month lead time to the maximum forecast lead time. The obtained results were evaluated using three performance criteria (NSE, RMSE and MAE). The results show that WANN models with discrete approximation of Meyer have the best forecast performance. The maximum forecast lead times are 36-month for SPI-12, 18-month for SPI-6 and 7- month for the SPI-3. Drought forecasting for long lead times have significant values in drought risk and water resources management.

Suggested Citation

  • Djerbouai Salim & Souag-Gamane Doudja & Ferhati Ahmed & Djoukbala Omar & Dougha Mostafa & Benselama Oussama & Hasbaia Mahmoud, 2023. "Comparative Study of Different Discrete Wavelet Based Neural Network Models for long term Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1401-1420, February.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-023-03432-0
    DOI: 10.1007/s11269-023-03432-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03432-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03432-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salim Djerbouai & Doudja Souag-Gamane, 2016. "Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Stochastic Models: Case of the Algerois Basin in North Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2445-2464, May.
    2. Yan-Fang Sang, 2012. "A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3345-3365, September.
    3. Yongtao Wang & Jian Liu & Rong Li & Xinyu Suo & EnHui Lu, 2022. "Medium and Long-term Precipitation Prediction Using Wavelet Decomposition-prediction-reconstruction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 971-987, February.
    4. J. Drisya & D. Sathish Kumar & Thendiyath Roshni, 2021. "Hydrological drought assessment through streamflow forecasting using wavelet enabled artificial neural networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3653-3672, March.
    5. Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kouao Laurent Kouadio & Jianxin Liu & Serge Kouamelan Kouamelan & Rong Liu, 2023. "Ensemble Learning Paradigms for Flow Rate Prediction Boosting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4413-4431, September.
    2. Amir Molajou & Vahid Nourani & Ali Davanlou Tajbakhsh & Hossein Akbari Variani & Mina Khosravi, 2024. "Multi-Step-Ahead Rainfall-Runoff Modeling: Decision Tree-Based Clustering for Hybrid Wavelet Neural- Networks Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5195-5214, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Sik Ham & Kyong-Bok Sonu & Un-Sim Paek & Kum-Chol Om & Sang-Il Jong & Kum-Ryong Jo, 2023. "Comparison of LSTM network, neural network and support vector regression coupled with wavelet decomposition for drought forecasting in the western area of the DPRK," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2619-2643, March.
    2. Haijiao Yu & Xiaohu Wen & Qi Feng & Ravinesh C. Deo & Jianhua Si & Min Wu, 2018. "Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 301-323, January.
    3. Ali Barzkar & Mohammad Najafzadeh & Farshad Homaei, 2022. "Evaluation of drought events in various climatic conditions using data-driven models and a reliability-based probabilistic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1931-1952, February.
    4. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    5. Reza Rezaiy & Ani Shabri, 2024. "Improving Drought Prediction Accuracy: A Hybrid EEMD and Support Vector Machine Approach with Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5255-5277, October.
    6. Mahdi Soleimani Motlagh & Hoda Ghasemieh & Ali Talebi & Khodayar Abdollahi, 2017. "Identification and Analysis of Drought Propagation of Groundwater During Past and Future Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 109-125, January.
    7. Yongtao Wang & Jian Liu & Rong Li & Xinyu Suo & EnHui Lu, 2022. "Medium and Long-term Precipitation Prediction Using Wavelet Decomposition-prediction-reconstruction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 971-987, February.
    8. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    9. Bambo Bayo & Shakeel Mahmood, 2023. "Geo-spatial analysis of drought in The Gambia using multiple models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2751-2770, July.
    10. Jianhua Xu & Yaning Chen & Weihong Li & Qin Nie & Chunan Song & Chunmeng Wei, 2014. "Integrating Wavelet Analysis and BPANN to Simulate the Annual Runoff With Regional Climate Change: A Case Study of Yarkand River, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2523-2537, July.
    11. Wen-Ping Tsai & Yen-Ming Chiang & Jun-Lin Huang & Fi-John Chang, 2016. "Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4789-4806, October.
    12. Alpaslan Yarar, 2014. "A Hybrid Wavelet and Neuro-Fuzzy Model for Forecasting the Monthly Streamflow Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 553-565, January.
    13. Okan Mert Katipoğlu, 2023. "Prediction of Streamflow Drought Index for Short-Term Hydrological Drought in the Semi-Arid Yesilirmak Basin Using Wavelet Transform and Artificial Intelligence Techniques," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    14. Quoc Bao Pham & Tao-Chang Yang & Chen-Min Kuo & Hung-Wei Tseng & Pao-Shan Yu, 2021. "Coupling Singular Spectrum Analysis with Least Square Support Vector Machine to Improve Accuracy of SPI Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 847-868, February.
    15. Alex Dunne & Yuriy Kuleshov, 2023. "Drought risk assessment and mapping for the Murray–Darling Basin, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 839-863, January.
    16. Salim Djerbouai & Doudja Souag-Gamane, 2016. "Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Stochastic Models: Case of the Algerois Basin in North Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2445-2464, May.
    17. Lei Zhang & Wei Song & Wen Song, 2020. "Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia," IJERPH, MDPI, vol. 17(17), pages 1-24, August.
    18. Tsun-Hua Yang & Wen-Cheng Liu, 2020. "A General Overview of the Risk-Reduction Strategies for Floods and Droughts," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    19. Belkhiri, Lazhar, 2021. "Spatial and temporal variability of water stress risk in the Kebir Rhumel Basin, Algeria," Agricultural Water Management, Elsevier, vol. 253(C).
    20. Yan-Fang Sang & Zhonggen Wang & Changming Liu, 2015. "Wavelet Neural Modeling for Hydrologic Time Series Forecasting with Uncertainty Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1789-1801, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-023-03432-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.