IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i14d10.1007_s11269-021-02920-5.html
   My bibliography  Save this article

An Ensemble Hybrid Forecasting Model for Annual Runoff Based on Sample Entropy, Secondary Decomposition, and Long Short-Term Memory Neural Network

Author

Listed:
  • Wen-chuan Wang

    (North China University of Water Resources and Electric Power)

  • Yu-jin Du

    (North China University of Water Resources and Electric Power)

  • Kwok-wing Chau

    (The Hong Kong Polytechnic University)

  • Dong-mei Xu

    (North China University of Water Resources and Electric Power)

  • Chang-jun Liu

    (China Institute of Water Resources and Hydropower Research)

  • Qiang Ma

    (China Institute of Water Resources and Hydropower Research)

Abstract

Accurate and consistent annual runoff prediction in a region is a hot topic in management, optimization, and monitoring of water resources. A novel prediction model (ESMD-SE-WPD-LSTM) is presented in this study. Firstly, extreme-point symmetric mode decomposition (ESMD) is used to produce several intrinsic mode functions (IMF) and a residual (Res) by decomposing the original runoff series. Secondly, sample entropy (SE) method is employed to measure the complexity of each IMF. Thirdly, wavelet packet decomposition (WPD) is adopted to further decompose the IMF with the maximum SE into several appropriate components. Then long short-term memory (LSTM) model, a deep learning algorithm based recurrent approach, is employed to predict all components. Finally, forecasting results of all components are aggregated to generate the final prediction. The proposed model, which is applied to seven annual series from different areas in China, is evaluated based on four evaluation indexes (R, MAE, MAPE and RMSE). Results indicate that ESMD-SE-WPD-LSTM outperforms other benchmark models in terms of four evaluation indexes. Hence the proposed model can provide higher accuracy and consistency for annual runoff prediction, rendering it an efficient instrument for scientific management and planning of water resources.

Suggested Citation

  • Wen-chuan Wang & Yu-jin Du & Kwok-wing Chau & Dong-mei Xu & Chang-jun Liu & Qiang Ma, 2021. "An Ensemble Hybrid Forecasting Model for Annual Runoff Based on Sample Entropy, Secondary Decomposition, and Long Short-Term Memory Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4695-4726, November.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02920-5
    DOI: 10.1007/s11269-021-02920-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02920-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02920-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinxin He & Jungang Luo & Peng Li & Ganggang Zuo & Jiancang Xie, 2020. "A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 865-884, January.
    2. Anas Mahmood Al-Juboori, 2021. "A Hybrid Model to Predict Monthly Streamflow Using Neighboring Rivers Annual Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 729-743, January.
    3. Youngmin Seo & Sungwon Kim & Ozgur Kisi & Vijay P. Singh & Kamban Parasuraman, 2016. "River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 4011-4035, September.
    4. Peiman Parisouj & Hamid Mohebzadeh & Taesam Lee, 2020. "Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4113-4131, October.
    5. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    6. Dong, Qingli & Sun, Yuhuan & Li, Peizhi, 2017. "A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China," Renewable Energy, Elsevier, vol. 102(PA), pages 241-257.
    7. Jianguo Zhou & Xiaolei Xu & Xuejing Huo & Yushuo Li, 2019. "Forecasting Models for Wind Power Using Extreme-Point Symmetric Mode Decomposition and Artificial Neural Networks," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    8. Yun Bai & Nejc Bezak & Bo Zeng & Chuan Li & Klaudija Sapač & Jin Zhang, 2021. "Daily Runoff Forecasting Using a Cascade Long Short-Term Memory Model that Considers Different Variables," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1167-1181, March.
    9. Erhao Meng & Shengzhi Huang & Qiang Huang & Wei Fang & Hao Wang & Guoyong Leng & Lu Wang & Hao Liang, 2021. "A Hybrid VMD-SVM Model for Practical Streamflow Prediction Using an Innovative Input Selection Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1321-1337, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi Yang & Zhihe Chen & Min Qin, 2024. "Monthly Runoff Prediction Via Mode Decomposition-Recombination Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 269-286, January.
    2. Icen Yoosefdoost & Abbas Khashei-Siuki & Hossein Tabari & Omolbani Mohammadrezapour, 2022. "Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1191-1215, March.
    3. Shuai Liu & Hui Qin & Guanjun Liu & Yang Xu & Xin Zhu & Xinliang Qi, 2023. "Runoff Forecasting of Machine Learning Model Based on Selective Ensemble," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4459-4473, September.
    4. Morteza Pakdaman & Iman Babaeian & Zohreh Javanshiri & Yashar Falamarzi, 2022. "European Multi Model Ensemble (EMME): A New Approach for Monthly Forecast of Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 611-623, January.
    5. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    2. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
    3. Zhennan Liu & Qiongfang Li & Jingnan Zhou & Weiguo Jiao & Xiaoyu Wang, 2021. "Runoff Prediction Using a Novel Hybrid ANFIS Model Based on Variable Screening," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2921-2940, July.
    4. Anas Mahmood Al-Juboori, 2022. "Solving Complex Rainfall-Runoff Processes in Semi-Arid Regions Using Hybrid Heuristic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 717-728, January.
    5. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    6. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    7. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    9. Mustafa Najat Asaad & Şule Eryürük & Kağan Eryürük, 2022. "Forecasting of Streamflow and Comparison of Artificial Intelligence Methods: A Case Study for Meram Stream in Konya, Turkey," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    10. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    11. Shijun Wang & Chun Liu & Kui Liang & Ziyun Cheng & Xue Kong & Shuang Gao, 2022. "Wind Speed Prediction Model Based on Improved VMD and Sudden Change of Wind Speed," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    12. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    13. Ana C. Cebrián & Ricardo Salillas, 2021. "Forecasting High-Frequency River Level Series Using Double Switching Regression with ARMA Errors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 299-313, January.
    14. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    15. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    16. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    17. Zhuo Jia & Yuhao Peng & Qin Li & Rui Xiao & Xue Chen & Zhijin Cheng, 2024. "Monthly Runoff forecasting using A Climate‑driven Model Based on Two-stage Decomposition and Optimized Support Vector Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5701-5722, November.
    18. Khatereh Ghasvarian Jahromi & Davood Gharavian & Hamid Reza Mahdiani, 2023. "Wind power prediction based on wind speed forecast using hidden Markov model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 101-123, January.
    19. Yuri B. Kirsta & Ol’ga V. Lovtskaya, 2021. "Good-quality Long-term Forecast of Spring-summer Flood Runoff for Mountain Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 811-825, February.
    20. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02920-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.