Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Stochastic Models: Case of the Algerois Basin in North Algeria
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-016-1298-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ana Paulo & Luis Pereira, 2008. "Stochastic Prediction of Drought Class Transitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1277-1296, September.
- A. Cancelliere & G. Mauro & B. Bonaccorso & G. Rossi, 2007. "Drought forecasting using the Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 801-819, May.
- Yan-Fang Sang, 2012. "A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3345-3365, September.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Quoc Bao Pham & Tao-Chang Yang & Chen-Min Kuo & Hung-Wei Tseng & Pao-Shan Yu, 2021. "Coupling Singular Spectrum Analysis with Least Square Support Vector Machine to Improve Accuracy of SPI Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 847-868, February.
- Djerbouai Salim & Souag-Gamane Doudja & Ferhati Ahmed & Djoukbala Omar & Dougha Mostafa & Benselama Oussama & Hasbaia Mahmoud, 2023. "Comparative Study of Different Discrete Wavelet Based Neural Network Models for long term Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1401-1420, February.
- Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.
- Wen-Ping Tsai & Yen-Ming Chiang & Jun-Lin Huang & Fi-John Chang, 2016. "Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4789-4806, October.
- Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
- Yong-Sik Ham & Kyong-Bok Sonu & Un-Sim Paek & Kum-Chol Om & Sang-Il Jong & Kum-Ryong Jo, 2023. "Comparison of LSTM network, neural network and support vector regression coupled with wavelet decomposition for drought forecasting in the western area of the DPRK," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2619-2643, March.
- Mahdi Soleimani Motlagh & Hoda Ghasemieh & Ali Talebi & Khodayar Abdollahi, 2017. "Identification and Analysis of Drought Propagation of Groundwater During Past and Future Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 109-125, January.
- Belkhiri, Lazhar, 2021. "Spatial and temporal variability of water stress risk in the Kebir Rhumel Basin, Algeria," Agricultural Water Management, Elsevier, vol. 253(C).
- Ali Barzkar & Mohammad Najafzadeh & Farshad Homaei, 2022. "Evaluation of drought events in various climatic conditions using data-driven models and a reliability-based probabilistic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1931-1952, February.
- Okan Mert Katipoğlu, 2023. "Prediction of Streamflow Drought Index for Short-Term Hydrological Drought in the Semi-Arid Yesilirmak Basin Using Wavelet Transform and Artificial Intelligence Techniques," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
- Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
- Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
- Zeyad Tarawneh & Elgaali Elgaali & Moshrik Hamdi, 2009. "Bi-site Analysis of Meteorological Drought Duration: Theoretical Modeling and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3005-3018, November.
- Duong Tran Anh & Thanh Duc Dang & Song Pham Van, 2019. "Improved Rainfall Prediction Using Combined Pre-Processing Methods and Feed-Forward Neural Networks," J, MDPI, vol. 2(1), pages 1-19, February.
- Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Hyunwoo Kang & Venkataramana Sridhar, 2018. "Improved Drought Prediction Using Near Real-Time Climate Forecasts and Simulated Hydrologic Conditions," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
- Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
- Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011.
"Conditionally dependent strategies for multiple-step-ahead prediction in local learning,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
- Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Roman Matkovskyy & Taoufik Bouraoui, 2019.
"Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model,"
Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 433-446, June.
- Roman Matkovskyy & Taoufik Bouraoui, 2019. "Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model," Post-Print hal-02155402, HAL.
- Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
More about this item
Keywords
Algerois catchment; ARIMA; Drought; Forecasting; Neural networks; SPI; Wavelet transforms;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:7:d:10.1007_s11269-016-1298-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.