IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i15d10.1007_s11269-019-02418-1.html
   My bibliography  Save this article

Reservoir Inflow Prediction by Ensembling Wavelet and Bootstrap Techniques to Multiple Linear Regression Model

Author

Listed:
  • Adnan Bashir

    (Bahauddin Zakaryia University)

  • Muhammad Ahmed Shehzad

    (Bahauddin Zakaryia University)

  • Ijaz Hussain

    (Quaid-e-Azam University)

  • Muhammad Ishaq Asif Rehmani

    (Ghazi University)

  • Sajjad Haider Bhatti

    (Governement College University)

Abstract

In this study, a new hybrid model, bootstrap multiple linear regression (BMLR) is suggested to investigate the potential of bootstrap resampling technique for daily reservoir inflow prediction. The proposed model compares with three other models: Multiple linear regression (MLR), wavelet multiple linear regression (WMLR) and wavelet bootstrap multiple linear regression (WBMLR). River stage data of monsoon season (1st July 2010 to 30 September 2010) from three gauging stations of Chenab river basin are used. In wavelet transformation, input vectors are decomposed using discrete wavelet transformation (DWT) into discrete wavelet components (DWCs). Then suitable DWCs are used to provide input to MLR model to develop WMLR model. Bootstrap technique coupled with MLR model to build up BMLR model. While WBMLR model is the conjunction of suitable DWCs and bootstrap technique to MLR model. Performance indices namely root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe coefficient of efficiency (NSC), and persistence index (CP) are used in study to evaluate the performance of model. Results showed that hybrid model BMLR produce significantly better results on performance indices than other models MLR, WMLR and WBMLR.

Suggested Citation

  • Adnan Bashir & Muhammad Ahmed Shehzad & Ijaz Hussain & Muhammad Ishaq Asif Rehmani & Sajjad Haider Bhatti, 2019. "Reservoir Inflow Prediction by Ensembling Wavelet and Bootstrap Techniques to Multiple Linear Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5121-5136, December.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:15:d:10.1007_s11269-019-02418-1
    DOI: 10.1007/s11269-019-02418-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02418-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02418-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    2. Zaw Latt & Hartmut Wittenberg, 2014. "Improving Flood Forecasting in a Developing Country: A Comparative Study of Stepwise Multiple Linear Regression and Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2109-2128, June.
    3. Vinit Sehgal & Mukesh Tiwari & Chandranath Chatterjee, 2014. "Wavelet Bootstrap Multiple Linear Regression Based Hybrid Modeling for Daily River Discharge Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2793-2811, August.
    4. Youngmin Seo & Sungwon Kim & Ozgur Kisi & Vijay P. Singh & Kamban Parasuraman, 2016. "River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 4011-4035, September.
    5. Ascough, J.C. & Maier, H.R. & Ravalico, J.K. & Strudley, M.W., 2008. "Future research challenges for incorporation of uncertainty in environmental and ecological decision-making," Ecological Modelling, Elsevier, vol. 219(3), pages 383-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pruethsan Sutthichaimethee & Harlida Abdul Wahab, 2021. "A Forecasting Model in Managing Future Scenarios to Achieve the Sustainable Development Goals of Thailand s Environmental Law: Enriching the Path Analysis-VARIMA-OVi Model," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 398-411.
    2. Uttam Singh & Pramod Kumar Sharma, 2022. "Seasonal Uncertainty Estimation of Surface Nuclear Magnetic Resonance Water Content using Bootstrap Statistics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2493-2508, May.
    3. Yongtao Wang & Jian Liu & Rong Li & Xinyu Suo & EnHui Lu, 2022. "Medium and Long-term Precipitation Prediction Using Wavelet Decomposition-prediction-reconstruction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 971-987, February.
    4. Haibo Chu & Jianmin Bian & Qi Lang & Xiaoqing Sun & Zhuoqi Wang, 2022. "Daily Groundwater Level Prediction and Uncertainty Using LSTM Coupled with PMI and Bootstrap Incorporating Teleconnection Patterns Information," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    5. Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    2. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    3. J. J. Warmink & M. Brugnach & J. Vinke-de Kruijf & R. M. J. Schielen & D. C. M. Augustijn, 2017. "Coping with Uncertainty in River Management: Challenges and Ways Forward," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4587-4600, November.
    4. Vanwindekens, Frédéric M. & Stilmant, Didier & Baret, Philippe V., 2013. "Development of a broadened cognitive mapping approach for analysing systems of practices in social–ecological systems," Ecological Modelling, Elsevier, vol. 250(C), pages 352-362.
    5. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
    6. Kulwinder Parmar & Rashmi Bhardwaj, 2015. "River Water Prediction Modeling Using Neural Networks, Fuzzy and Wavelet Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 17-33, January.
    7. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
    8. Calder, Ryan S.D. & Shi, Congjie & Mason, Sara A. & Olander, Lydia P. & Borsuk, Mark E., 2019. "Forecasting ecosystem services to guide coastal wetland rehabilitation decisions," Ecosystem Services, Elsevier, vol. 39(C).
    9. Haibo Chu & Jiahua Wei & Yuan Jiang, 2021. "Middle- and Long-Term Streamflow Forecasting and Uncertainty Analysis Using Lasso-DBN-Bootstrap Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2617-2632, June.
    10. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    11. Torres, Cati & Faccioli, Michela & Riera Font, Antoni, 2017. "Waiting or acting now? The effect on willingness-to-pay of delivering inherent uncertainty information in choice experiments," Ecological Economics, Elsevier, vol. 131(C), pages 231-240.
    12. Xavier Romão & Esmeralda Paupério, 2016. "A framework to assess quality and uncertainty in disaster loss data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1077-1102, September.
    13. Linda Lilburne & Melissa Robson-Williams & Ned Norton, 2022. "Improving Understanding and Management of Uncertainty in Science-Informed Collaborative Policy Processes," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    14. Chengbiao Fu & Heigang Xiong & Anhong Tian, 2018. "Fractional Modeling for Quantitative Inversion of Soil-Available Phosphorus Content," Mathematics, MDPI, vol. 6(12), pages 1-11, December.
    15. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    16. Smajgl, Alex & House, Alan P.N. & Butler, James R.A., 2011. "Implications of ecological data constraints for integrated policy and livelihoods modelling: An example from East Kalimantan, Indonesia," Ecological Modelling, Elsevier, vol. 222(3), pages 888-896.
    17. Stelzenmüller, Vanessa & Vega Fernández, Tomás & Cronin, Katherine & Röckmann, Christine & Pantazi, Maria & Vanaverbeke, Jan & Stamford, Tammy & Hostens, Kris & Pecceu, Ellen & Degraer, Steven & Buhl-, 2015. "Assessing uncertainty associated with the monitoring and evaluation of spatially managed areas," Marine Policy, Elsevier, vol. 51(C), pages 151-162.
    18. Stefania Santoro & Pasquale Balena & Domenico Camarda, 2020. "Knowledge Models for Spatial Planning: Ecosystem Services Awareness in the New Plan of Bari (Italy)," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    19. Jin-Cheng Fu & Hsiao-Yun Huang & Jiun-Huei Jang & Pei-Hsun Huang, 2019. "River Stage Forecasting Using Multiple Additive Regression Trees," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4491-4507, October.
    20. Xingsheng Shu & Wei Ding & Yong Peng & Ziru Wang & Jian Wu & Min Li, 2021. "Monthly Streamflow Forecasting Using Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5089-5104, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:15:d:10.1007_s11269-019-02418-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.