Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-022-03068-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S. Vijay & K. Kamaraj, 2021. "Prediction of Water Quality Index in Drinking Water Distribution System Using Activation Functions Based Ann," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 535-553, January.
- Yaser Amiri-Ardakani & Mohammad Najafzadeh, 2021. "Pipe Break Rate Assessment While Considering Physical and Operational Factors: A Methodology based on Global Positioning System and Data-Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3703-3720, September.
- Hill, Tim & Marquez, Leorey & O'Connor, Marcus & Remus, William, 1994. "Artificial neural network models for forecasting and decision making," International Journal of Forecasting, Elsevier, vol. 10(1), pages 5-15, June.
- Rabin Chakrabortty & Subodh Chandra Pal & Saeid Janizadeh & M. Santosh & Paramita Roy & Indrajit Chowdhuri & Asish Saha, 2021. "Impact of Climate Change on Future Flood Susceptibility: an Evaluation Based on Deep Learning Algorithms and GCM Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4251-4274, September.
- Abinash Mohanta & Arpan Pradhan & Monalisa Mallick & K. C. Patra, 2021. "Assessment of Shear Stress Distribution in Meandering Compound Channels with Differential Roughness Through Various Artificial Intelligence Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4535-4559, October.
- Wen-chuan Wang & Yu-jin Du & Kwok-wing Chau & Dong-mei Xu & Chang-jun Liu & Qiang Ma, 2021. "An Ensemble Hybrid Forecasting Model for Annual Runoff Based on Sample Entropy, Secondary Decomposition, and Long Short-Term Memory Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4695-4726, November.
- Erhao Meng & Shengzhi Huang & Qiang Huang & Wei Fang & Hao Wang & Guoyong Leng & Lu Wang & Hao Liang, 2021. "A Hybrid VMD-SVM Model for Practical Streamflow Prediction Using an Innovative Input Selection Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1321-1337, March.
- Ahmad Jafarzadeh & Mohsen Pourreza-Bilondi & Abbas Khashei Siuki & Javad Ramezani Moghadam, 2021. "Examination of Various Feature Selection Approaches for Daily Precipitation Downscaling in Different Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 407-427, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pedram Pishgah Hadiyan & Ramtin Moeini & Eghbal Ehsanzadeh & Monire Karvanpour, 2022. "Trend Analysis of Water Inflow Into the Dam Reservoirs Under Future Conditions Predicted By Dynamic NAR and NARX Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2703-2723, June.
- Pablo F. Andreoni & Marcia A. Ruiz & María Inés Rodríguez & Ana Laura Ruibal-Conti, 2022. "Unraveling the Lagged Effect of Hydro-meteorological Conditions On the Trophic State of a Reservoir By Applying Dynamic Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4275-4291, September.
- Xiao Li & Liping Zhang & Sidong Zeng & Zhenyu Tang & Lina Liu & Qin Zhang & Zhengyang Tang & Xiaojun Hua, 2022. "Predicting Monthly Runoff of the Upper Yangtze River Based on Multiple Machine Learning Models," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Prybutok, Victor R. & Yi, Junsub & Mitchell, David, 2000. "Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations," European Journal of Operational Research, Elsevier, vol. 122(1), pages 31-40, April.
- C, Deep Prakash & Majumdar, Adrija, 2023. "Predicting sports fans’ engagement with culturally aligned social media content: A language expectancy perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
- Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
- Chatfield, Chris, 1995. "Positive or negative?," International Journal of Forecasting, Elsevier, vol. 11(4), pages 501-502, December.
- Oscar Claveria & Salvador Torra, 2013.
"“Forecasting Business surveys indicators: neural networks vs. time series models”,"
AQR Working Papers
201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
- Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," IREA Working Papers 201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
- Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
- Thomassey, Sebastien & Happiette, Michel & Castelain, Jean Marie, 2005. "A short and mean-term automatic forecasting system--application to textile logistics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 275-284, February.
- Arshia Amiri & Ulf-G Gerdtham, 2012.
"Granger Causality Between Exports, Imports and GDP in France: Evidance from Using Geostatistical Models,"
Economic Research Guardian, Mutascu Publishing, vol. 2(1), pages 43-59, May.
- Amiri, Arshia & Gerdtham, Ulf-G, 2011. "Relationship between exports, imports, and economic growth in France: evidence from cointegration analysis and Granger causality with using geostatistical models," MPRA Paper 34190, University Library of Munich, Germany.
- Xuan Wang & Wenchong Tian & Zhenliang Liao, 2022. "Framework for Hyperparameter Impact Analysis and Selection for Water Resources Feedforward Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4201-4217, September.
- Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
- Geraint Johnes, 2000. "Up Around the Bend: Linear and nonlinear models of the UK economy compared," International Review of Applied Economics, Taylor & Francis Journals, vol. 14(4), pages 485-493.
- Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
- de Lucio, Juan, 2021. "Estimación adelantada del crecimiento regional mediante redes neuronales LSTM," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 49, pages 45-64.
- Mioara CHIRITA & Daniela SARPE, 2011. "Usefulness of Artificial Neural Networks for Predicting Financial and Economic Crisis," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 44-48.
- Daniel Santin, 2008.
"On the approximation of production functions: a comparison of artificial neural networks frontiers and efficiency techniques,"
Applied Economics Letters, Taylor & Francis Journals, vol. 15(8), pages 597-600.
- Santin, Daniel, 2004. "On the Approximation of Production Functions: A Comparison of Artificial Neural Networks Frontiers and Efficiency Techniques," Efficiency Series Papers 2004/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
- Parvin Golfam & Parisa-Sadat Ashofteh, 2022. "Performance Indexes Analysis of the Reservoir-Hydropower Plant System Affected by Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5127-5162, October.
- Zehai Gao & Yang Liu & Nan Li & Kangjie Ma, 2022. "An Enhanced Beetle Antennae Search Algorithm Based Comprehensive Water Quality Index for Urban River Water Quality Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2685-2702, June.
- Chao Liu & Mingshuang Xu & Yufeng Liu & Xuefei Li & Zonglin Pang & Sheng Miao, 2022. "Predicting Groundwater Indicator Concentration Based on Long Short-Term Memory Neural Network: A Case Study," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
- Pei En Lee, 2019. "The Empirical Study of Investor Sentiment on Stock Return Prediction," International Journal of Economics and Financial Issues, Econjournals, vol. 9(2), pages 119-124.
- Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
More about this item
Keywords
Rainfall-runoff forecasting model; Artificial intelligence techniques; Climate change; LARS; Gamma and M tests;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:4:d:10.1007_s11269-022-03068-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.