IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i6d10.1007_s11269-019-02223-w.html
   My bibliography  Save this article

A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition

Author

Listed:
  • Mohammad S. Khorshidi

    (Shiraz University)

  • Mohammad Reza Nikoo

    (Shiraz University)

  • Mojtaba Sadegh

    (Boise State University)

  • Banafsheh Nematollahi

    (Shiraz University)

Abstract

In this paper, by using the concept of Conditional Value at Risk (CVaR), a Leader-Follower game (LFG) based multi-objective optimization model is developed to determine the optimum 12-month operation policy of a reservoir in potential future dry periods. The minimization of CVaRs of storage loss and agricultural and environmental deficits along with maximization of planned allocation to agricultural sector are considered as leader’s objectives, while the followers try to maximize their share of water rights using Nash bargaining (NB) method. This framework is then used to model the operation policy of Dorudzan basin in Fars province, southwestern Iran. Water demand and daily climate data in the period of 2003 to 2015 for this basin, as well as future projections from fifteen IPCC-AR4 global circulation models (GCMs) for 2018–2030 under A2, B1 and A1B emission scenarios are considered to evaluate future dam operation policies. Future projections are downscaled using the LARS-WG model, which then feeds the HMETS watershed model to simulate the corresponding reservoir inflow time-series. Thereafter, three-hundred 12-month rainfall, evaporation and inflow time series with least inflow volume are used as input for the optimization model, which is solved using NSGA-II and GA algorithms. The results show while the model can determine the operation policy that keeps the associated risks in the acceptable range, it can satisfy the followers demands with respect to the available resources. The results also show that the agricultural sector of the study area can be hugely affected by potential future droughts.

Suggested Citation

  • Mohammad S. Khorshidi & Mohammad Reza Nikoo & Mojtaba Sadegh & Banafsheh Nematollahi, 2019. "A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1999-2014, April.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-02223-w
    DOI: 10.1007/s11269-019-02223-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02223-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02223-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    2. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    3. Hassan Benchekroun & Ngo Van Long, 2001. "Leader and Follower: A Differential Game Model," CIRANO Working Papers 2001s-08, CIRANO.
    4. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    5. D. Haro & J. Paredes & A. Solera & J. Andreu, 2012. "A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4059-4071, November.
    6. Singh, D. K. & Jaiswal, C. S. & Reddy, K. S. & Singh, R. M. & Bhandarkar, D. M., 2001. "Optimal cropping pattern in a canal command area," Agricultural Water Management, Elsevier, vol. 50(1), pages 1-8, August.
    7. Amir AghaKouchak & David Feldman & Martin Hoerling & Travis Huxman & Jay Lund, 2015. "Water and climate: Recognize anthropogenic drought," Nature, Nature, vol. 524(7566), pages 409-411, August.
    8. Md. Hossain & A. El-shafie, 2013. "Intelligent Systems in Optimizing Reservoir Operation Policy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3387-3407, July.
    9. Mojtaba Sadegh & Reza Kerachian, 2011. "Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2543-2573, August.
    10. Sethi, Laxmi Narayan & Panda, Sudhindra N. & Nayak, Manoj K., 2006. "Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India," Agricultural Water Management, Elsevier, vol. 83(3), pages 209-220, June.
    11. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    12. Mojtaba Sadegh & Najmeh Mahjouri & Reza Kerachian, 2010. "Optimal Inter-Basin Water Allocation Using Crisp and Fuzzy Shapley Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2291-2310, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Youzhi & Guo, Xinwei & Zhang, Fan & Yin, Huijuan & Guo, Ping & Zhang, Wenge & Li, Qiangkun, 2022. "The spatially-distributed ANN-optimization approach for water-agriculture-ecology nexus management under uncertainties and risks," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Aadhityaa Mohanavelu & Bankaru-Swamy Soundharajan & Ozgur Kisi, 2022. "Modeling Multi-objective Pareto-optimal Reservoir Operation Policies Using State-of-the-art Modeling Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3107-3128, July.
    3. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    4. Parisa-Sadat Ashofteh & Shirin Moradi Far & Parvin Golfam, 2023. "Application of Multi-Criteria Decision-Making of CODAS and SWARA in Reservoir Optimal Operation Using Marine Predator Algorithm Based on Game Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4385-4412, September.
    5. Lingquan Dai & Huichao Dai & Haibo Liu & Yu Wang & Jiali Guo & Zhuosen Cai & Chenxi Mi, 2020. "Development of an Optimal Model for the Xiluodu-Xiangjiaba Cascade Reservoir System Considering the Downstream Environmental Flow," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    6. Sadegh Vanda & Mohammad Reza Nikoo & Narges Taravatrooy & Ghazi Ali Al-Rawas & Seyed M. K. Sadr & Fayyaz A. Memon & Banafsheh Nematollahi, 2023. "A Novel Compromise Approach for Risk-Based Selective Water Withdrawal from Reservoirs Considering Qualitative-Quantitative Aspects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4861-4879, September.
    7. Shahin Zandmoghaddam & Ali Nazemi & Elmira Hassanzadeh & Shadi Hatami, 2019. "Representing Local Dynamics of Water Resource Systems through a Data-Driven Emulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3579-3594, August.
    8. Xue Li & Jian Sha & Yue Zhao & Zhong-Liang Wang, 2019. "Estimating the Responses of Hydrological and Sedimental Processes to Future Climate Change in Watersheds with Different Landscapes in the Yellow River Basin, China," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    9. Mohammad Ehteram & Samira Ghotbi & Ozgur Kisi & Ahmed EL-Shafie, 2019. "Application of a Coordination Model for a Large Number of Stakeholders with a New Game Theory Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5207-5230, December.
    10. Jian Sha & Xue Li & Jingjing Yang, 2021. "Estimation of Watershed Hydrochemical Responses to Future Climate Changes Based on CMIP6 Scenarios in the Tianhe River (China)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Nikoo & Reza Kerachian & Hamed Poorsepahy-Samian, 2012. "An Interval Parameter Model for Cooperative Inter-Basin Water Resources Allocation Considering the Water Quality Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3329-3343, September.
    2. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2017. "Optimized cropping patterns under climate-change conditions," Climatic Change, Springer, vol. 143(3), pages 429-443, August.
    3. Zhenliang Liao & Phillip Hannam, 2013. "The Mekong Game: Achieving an All-win Situation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2611-2622, May.
    4. Shannak, Sa'd, 2022. "Optimizing dynamics of water-energy-food nexus in a desert climate," Energy Policy, Elsevier, vol. 164(C).
    5. Armaghan Abed-Elmdoust & Reza Kerachian, 2012. "Water Resources Allocation Using a Cooperative Game with Fuzzy Payoffs and Fuzzy Coalitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3961-3976, October.
    6. Samaneh Ashraf & Amir AghaKouchak & Ali Nazemi & Ali Mirchi & Mojtaba Sadegh & Hamed R. Moftakhari & Elmira Hassanzadeh & Chi-Yuan Miao & Kaveh Madani & Mohammad Mousavi Baygi & Hassan Anjileli & Davo, 2019. "Compounding effects of human activities and climatic changes on surface water availability in Iran," Climatic Change, Springer, vol. 152(3), pages 379-391, March.
    7. Z. Ghaffari Moghadam & E. Moradi & M. Hashemi Tabar & A. Sardar Shahraki, 2023. "Developing a Bi-level programming model for water allocation based on Nerlove’s supply response theory and water market," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5663-5689, June.
    8. Armaghan Abed-Elmdoust & Reza Kerachian, 2014. "Evaluating the Relative Power of Water Users in Inter-Basin Water Transfer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 495-509, January.
    9. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    10. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Ali Reza Nafarzadegan & Hassan Vagharfard & Mohammad Reza Nikoo & Ahmad Nohegar, 2018. "Socially-Optimal and Nash Pareto-Based Alternatives for Water Allocation under Uncertainty: an Approach and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2985-3000, July.
    12. Alireza Mojarabi-Kermani & Ehsan Shirangi & Amin Bordbar & Amir Abbas Kaman Bedast & Alireza Masjedi, 2019. "Stochastic Optimal Reservoir Operation Management, Applying Group Conflict Resolution Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2847-2865, June.
    13. Narges Taravatrooy & Mohammad Reza Nikoo & Mojtaba Sadegh & Mohammad Parvinnia, 2018. "A hybrid clustering-fusion methodology for land subsidence estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 905-926, November.
    14. Keighobad Jafarzadegan & Armaghan Abed-Elmdoust & Reza Kerachian, 2013. "A Fuzzy Variable Least Core Game for Inter-basin Water Resources Allocation Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3247-3260, July.
    15. Armaghan Abed-Elmdoust & Reza Kerachian, 2013. "Incorporating Economic and Political Considerations in Inter-Basin Water Allocations: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 859-870, February.
    16. Ahmed M. Alabdulkader & Ahmed I. Al-Amoud & Fawzi S. Awad, 2012. "Optimization of the cropping pattern in Saudi Arabia using a mathematical programming sector model," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 58(2), pages 56-60.
    17. Aurobrata Das & Bhabagrahi Sahoo & Sudhindra N. Panda, 2020. "Evaluation of Nexus-Sustainability and Conventional Approaches for Optimal Water-Energy-Land-Crop Planning in an Irrigated Canal Command," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2329-2351, June.
    18. Li, Mo & Guo, Ping & Singh, Vijay P. & Yang, Gaiqiang, 2016. "An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation," Agricultural Water Management, Elsevier, vol. 177(C), pages 10-23.
    19. Irfan Ahmed Shaikh & Aimrun Wayayok & Munir Ahmed Mangrio & Ziyad Ali Alhussain & Farman Ali Chandio & Zaheer Ahmed Khan & Waseem Asghar Khan & Mogtaba Mohammed & Murtada K. Elbashir & Jamshaid Ul Rah, 2022. "Optimizing Approach of Water Allocation to Off-Takes During Reduced Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 891-913, February.
    20. Hamed Poorsepahy-Samian & Reza Kerachian & Mohammad Nikoo, 2012. "Water and Pollution Discharge Permit Allocation to Agricultural Zones: Application of Game Theory and Min-Max Regret Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4241-4257, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-02223-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.