IDEAS home Printed from https://ideas.repec.org/a/caa/jnlage/v58y2012i2id8-2011-agricecon.html
   My bibliography  Save this article

Optimization of the cropping pattern in Saudi Arabia using a mathematical programming sector model

Author

Listed:
  • Ahmed M. Alabdulkader

    (King Abdulaziz City for Science and Technology, Life Sciences and Environment Sector, Riyadh, Saudi Arabia)

  • Ahmed I. Al-Amoud

    (King Saud University, College of Food and Agricultural Sciences, Riyadh, Saudi)

  • Fawzi S. Awad

    (King Saud University, College of Food and Agricultural Sciences, Riyadh, Saudi)

Abstract

A mathematical sector model has been formulated to optimize the cropping pattern in Saudi Arabia aiming at maximizing the net annual return of the agricultural sector in Saudi Arabia and ensuring the efficient allocation of the scarce water resources and arable land among the competing crops. The results showed the potential for Saudi Arabia to optimize its cropping pattern and to generate an estimated net return equivalent to about 2.42 billion US$ per year. The optimized cropping pattern in Saudi Arabia has been coupled with about 53% saving in the water use and about 48% reduction in the arable land use compared to the base-year cropping pattern. Comparable weights was given to different crop groups by allocating about 48.4%, 35.4%, 13.1%, and 3.2% to grow cereals, fruits, forages, and vegetables, respectively. These findings were in line with the national strategy to rationalize the cultivation of water-intensive crops in favour of highly water-efficient crops.

Suggested Citation

  • Ahmed M. Alabdulkader & Ahmed I. Al-Amoud & Fawzi S. Awad, 2012. "Optimization of the cropping pattern in Saudi Arabia using a mathematical programming sector model," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 58(2), pages 56-60.
  • Handle: RePEc:caa:jnlage:v:58:y:2012:i:2:id:8-2011-agricecon
    DOI: 10.17221/8/2011-AGRICECON
    as

    Download full text from publisher

    File URL: http://agricecon.agriculturejournals.cz/doi/10.17221/8/2011-AGRICECON.html
    Download Restriction: free of charge

    File URL: http://agricecon.agriculturejournals.cz/doi/10.17221/8/2011-AGRICECON.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/8/2011-AGRICECON?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, D. K. & Jaiswal, C. S. & Reddy, K. S. & Singh, R. M. & Bhandarkar, D. M., 2001. "Optimal cropping pattern in a canal command area," Agricultural Water Management, Elsevier, vol. 50(1), pages 1-8, August.
    2. Sethi, Laxmi Narayan & Panda, Sudhindra N. & Nayak, Manoj K., 2006. "Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India," Agricultural Water Management, Elsevier, vol. 83(3), pages 209-220, June.
    3. Kaur, Baljinder & Sidhu, R.S. & Vatta, Kamal, 2010. "Optimal Crop Plans for Sustainable Water Use in Punjab," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 23(2), July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2017. "Optimized cropping patterns under climate-change conditions," Climatic Change, Springer, vol. 143(3), pages 429-443, August.
    2. Mohammad S. Khorshidi & Mohammad Reza Nikoo & Mojtaba Sadegh & Banafsheh Nematollahi, 2019. "A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1999-2014, April.
    3. Irfan Ahmed Shaikh & Aimrun Wayayok & Munir Ahmed Mangrio & Ziyad Ali Alhussain & Farman Ali Chandio & Zaheer Ahmed Khan & Waseem Asghar Khan & Mogtaba Mohammed & Murtada K. Elbashir & Jamshaid Ul Rah, 2022. "Optimizing Approach of Water Allocation to Off-Takes During Reduced Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 891-913, February.
    4. Deepti Rani & Sandra Mourato & Madalena Moreira, 2020. "A Generalized Dynamic Programming Modelling Approach for Integrated Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1335-1351, March.
    5. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Aurobrata Das & Bhabagrahi Sahoo & Sudhindra N. Panda, 2020. "Evaluation of Nexus-Sustainability and Conventional Approaches for Optimal Water-Energy-Land-Crop Planning in an Irrigated Canal Command," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2329-2351, June.
    7. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    8. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    9. Narayan, Kumar A. & Schleeberger, Carsten & Bristow, Keith L., 2007. "Modelling seawater intrusion in the Burdekin Delta Irrigation Area, North Queensland, Australia," Agricultural Water Management, Elsevier, vol. 89(3), pages 217-228, May.
    10. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    11. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    12. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    13. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    14. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    15. Sahil Bhatia & S. P. Singh, 2024. "Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
    16. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    17. Hourieh Masaeli & Alireza Gohari & Marzieh Hasanzadeh Saray & Ali Torabi Haghighi, 2023. "Developing a new water–energy–food‐greenhouse gases nexus tool for sustainable agricultural landscape management," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 877-892, April.
    18. A. Vasan & Komaragiri Raju, 2007. "Application of Differential Evolution for Irrigation Planning: An Indian Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1393-1407, August.
    19. Ghazali, Mahboubeh & Honar, Tooraj & Nikoo, Mohammad Reza, 2018. "A hybrid TOPSIS-agent-based framework for reducing the water demand requested by stakeholders with considering the agents’ characteristics and optimization of cropping pattern," Agricultural Water Management, Elsevier, vol. 199(C), pages 71-85.
    20. Atapattu, Sithara S. & Kodituwakku, Dekshika C., 2009. "Agriculture in South Asia and its implications on downstream health and sustainability: A review," Agricultural Water Management, Elsevier, vol. 96(3), pages 361-373, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlage:v:58:y:2012:i:2:id:8-2011-agricecon. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.