IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p966-d314084.html
   My bibliography  Save this article

Development of an Optimal Model for the Xiluodu-Xiangjiaba Cascade Reservoir System Considering the Downstream Environmental Flow

Author

Listed:
  • Lingquan Dai

    (College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
    China Three Gorges Corporation, Beijing 100038, China)

  • Huichao Dai

    (China Three Gorges Corporation, Beijing 100038, China)

  • Haibo Liu

    (China Yangtze Power Corporation, Yichang 443002, China)

  • Yu Wang

    (College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China)

  • Jiali Guo

    (College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China)

  • Zhuosen Cai

    (College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China)

  • Chenxi Mi

    (Helmholtz Centre for Environmental Research, Brueckstr 3a, D-39114 Magdeburg Germany)

Abstract

To explore the influence of the Xiluodu-Xiangjiaba cascade reservoir system on the appropriate environmental flow (AEF) of the Jinsha River, a multiobjective optimal cascade reservoir model was established with the aim of maximizing power generation while minimizing the downstream degree of AEF alteration. The AEF was determined using the range of variability approach (RVA). The optimal model was solved using an improved version of NSGA-II called INSGA2-DS. Inflows in typical normal and dry years were selected for optimization. The results show that in a normal year, power generation can be increased by 1.28% compared with that under the current regular operation conditions by prioritizing the maximization of power generation, in which case the degree of AEF alteration will increase by 13.86%. In contrast, the degree of AEF alteration will decrease by 22.53% if ecological protection is prioritized, but power generation will decrease by 0.62%. Similarly, in a dry year, power generation can be increased by 1.76% compared with that under the current regular operation conditions to maximize economic benefit, in which case, the degree of AEF alteration will increase by 4.95%. By contrast, the degree of AEF alteration can be decreased by 13.70% if the objective is AEF minimization, but power generation will decrease by 0.48%. These research results provide useful information for the formulation of ecological operation schemes involving cascade reservoirs on the Jinsha River.

Suggested Citation

  • Lingquan Dai & Huichao Dai & Haibo Liu & Yu Wang & Jiali Guo & Zhuosen Cai & Chenxi Mi, 2020. "Development of an Optimal Model for the Xiluodu-Xiangjiaba Cascade Reservoir System Considering the Downstream Environmental Flow," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:966-:d:314084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Zarei & Sayed-Farhad Mousavi & Madjid Eshaghi Gordji & Hojat Karami, 2019. "Optimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among Consumers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3071-3093, July.
    2. Bilgili, Mehmet & Bilirgen, Harun & Ozbek, Arif & Ekinci, Firat & Demirdelen, Tugce, 2018. "The role of hydropower installations for sustainable energy development in Turkey and the world," Renewable Energy, Elsevier, vol. 126(C), pages 755-764.
    3. J. Yazdi & A. Moridi, 2018. "Multi-Objective Differential Evolution for Design of Cascade Hydropower Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4779-4791, November.
    4. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    5. Jianjian Shen & Xiufei Zhang & Jian Wang & Rui Cao & Sen Wang & Jun Zhang, 2019. "Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions," Energies, MDPI, vol. 12(1), pages 1-19, January.
    6. Mohammad S. Khorshidi & Mohammad Reza Nikoo & Mojtaba Sadegh & Banafsheh Nematollahi, 2019. "A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1999-2014, April.
    7. Muhammad Usman Rashid & Abid Latif & Muhammad Azmat, 2018. "Optimizing Irrigation Deficit of Multipurpose Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1675-1687, March.
    8. Aydin Jadidi & Raimundo Menezes & Nilmar de Souza & Antonio Cezar de Castro Lima, 2019. "Short-Term Electric Power Demand Forecasting Using NSGA II-ANFIS Model," Energies, MDPI, vol. 12(10), pages 1-14, May.
    9. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Xu, Chong-Yu, 2018. "Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation," Applied Energy, Elsevier, vol. 228(C), pages 1726-1739.
    10. Bin Xu & Yufei Ma & Ping-an Zhong & Zhongbo Yu & Jianyun Zhang & Feilin Zhu, 2018. "Bargaining Model of Synergistic Revenue Allocation for the Joint Operations of a Multi-Stakeholder Cascade Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4625-4642, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Jianjian & Cheng, Chuntian & Wang, Sen & Yuan, Xiaoye & Sun, Lifei & Zhang, Jun, 2020. "Multiobjective optimal operations for an interprovincial hydropower system considering peak-shaving demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    3. Sedighkia, Mahdi & Abdoli, Asghar, 2023. "An optimization approach for managing environmental impacts of generating hydropower on fish biodiversity," Renewable Energy, Elsevier, vol. 218(C).
    4. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    5. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    6. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    7. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
    8. Xue Li & Jian Sha & Yue Zhao & Zhong-Liang Wang, 2019. "Estimating the Responses of Hydrological and Sedimental Processes to Future Climate Change in Watersheds with Different Landscapes in the Yellow River Basin, China," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    9. He, Shaokun & Guo, Shenglian & Yin, Jiabo & Liao, Zhen & Li, He & Liu, Zhangjun, 2022. "A novel impoundment framework for a mega reservoir system in the upper Yangtze River basin," Applied Energy, Elsevier, vol. 305(C).
    10. Zhao, Hongye & Liao, Shengli & Fang, Zhou & Liu, Benxi & Ma, Xiangyu & Lu, Jia, 2024. "Short-term peak-shaving operation of “N-reservoirs and multicascade” large-scale hydropower systems based on a decomposition-iteration strategy," Energy, Elsevier, vol. 288(C).
    11. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    12. Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
    13. Rong Tang & Ke Li & Wei Ding & Yuntao Wang & Huicheng Zhou & Guangtao Fu, 2020. "Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1005-1020, February.
    14. Huang, Sunhua & Zhou, Bin & Bu, Siqi & Li, Canbing & Zhang, Cong & Wang, Huaizhi & Wang, Tao, 2019. "Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system," Renewable Energy, Elsevier, vol. 139(C), pages 447-458.
    15. Yun Chen & Zhigen Hu & Quan Liu & Shu Chen, 2020. "Evolutionary Game Analysis of Tripartite Cooperation Strategy under Mixed Development Environment of Cascade Hydropower Stations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1951-1970, April.
    16. Hamid Kardan Moghaddam & Saman Javadi & Timothy O. Randhir & Neda Kavehkar, 2022. "A Multi-Indicator, Non-Cooperative Game Model to Resolve Conflicts for Aquifer Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5521-5543, November.
    17. Li Pan & Xudong Chen & Lu Zhao & Anran Xiao, 2019. "Does Information Asymmetry Impact Sub-Regions’ Cooperation of Regional Water Resource Allocation?," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    18. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    19. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    20. Ahmad Sharafati & Siyamak Doroudi & Shamsuddin Shahid & Ali Moridi, 2021. "A Novel Stochastic Approach for Optimization of Diversion System Dimension by Considering Hydrological and Hydraulic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3649-3677, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:966-:d:314084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.