IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i15d10.1007_s11269-019-02431-4.html
   My bibliography  Save this article

Application of a Coordination Model for a Large Number of Stakeholders with a New Game Theory Model

Author

Listed:
  • Mohammad Ehteram

    (Faculty of Civil Engineering)

  • Samira Ghotbi

    (Shahrood University of Technology)

  • Ozgur Kisi

    (Ilia State University)

  • Ahmed EL-Shafie

    (University of Malaya)

Abstract

Water allocation is an important issue for systems with multiple stakeholders. Individual and collective decisions are very important for such systems. Thus, a new integrated game model is proposed to create a good balance between cooperative and non-cooperative strategies. A dam-aquifer system was selected for the case study in Iraq. The system referred to should supply different stakeholders with water requirements. Three game models are used: 1) cooperative theory, non-cooperative theory, new integrated game structure. Effective factors in the way of cooperation was considered to demonstrate variations in the allocation of water to the stakeholders. The results of the cooperative or centralized model were considered as the best results. The results indicated that the new game model had good agreement with the centralized model. The outputs indicated that the allocation share of the downstream coalition could increase 4, 5 and 7% for high, medium and low inflow, respectively when the allocation share of the upstream coalition decreased 5%, 6% and 5% for high, medium and low inflow, respectively. The inflow excess volume at 90%, 50%, and 10% are considered as low inflow, medium inflow, and high inflow, respectively. It has been observed that the allocated volume of water to coalition downstream is increased by decreasing the more allocated volume of water to the coalition upstream. In addition, the new model supported the individual profits by applying the rationality decision while the cooperative game did not consider the individual benefits. In addition, the effect of inflows to reservoirs was considered to investigate the issue of water allocation in a critical condition.

Suggested Citation

  • Mohammad Ehteram & Samira Ghotbi & Ozgur Kisi & Ahmed EL-Shafie, 2019. "Application of a Coordination Model for a Large Number of Stakeholders with a New Game Theory Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5207-5230, December.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:15:d:10.1007_s11269-019-02431-4
    DOI: 10.1007/s11269-019-02431-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02431-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02431-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giovanni Sechi & Riccardo Zucca & Paola Zuddas, 2013. "Water Costs Allocation in Complex Systems Using a Cooperative Game Theory Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1781-1796, April.
    2. Yi Xiao & Keith W. Hipel & Liping Fang, 2016. "Incorporating Water Demand Management into a Cooperative Water Allocation Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2997-3012, July.
    3. Hamed Poorsepahy-Samian & Reza Kerachian & Mohammad Nikoo, 2012. "Water and Pollution Discharge Permit Allocation to Agricultural Zones: Application of Game Theory and Min-Max Regret Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4241-4257, November.
    4. Nannan Wu & Yejun Xu & D. Marc Kilgour, 2019. "Water allocation analysis of the Zhanghe River basin using the Graph Model for Conflict Resolution with incomplete fuzzy preferences," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    5. Mehran Homayounfar & Arman Ganji & C. Martinez, 2011. "A Novel Solution for Stochastic Dynamic Game of Water Allocation from a Reservoir Using Collocation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3427-3444, October.
    6. Raul P. Lejano & Li Li, 2019. "Cooperative game-theoretic perspectives on global climate action: Evaluating international carbon reduction agreements," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 8(1), pages 79-89, January.
    7. Azadeh Ahmadi & Mohammad Amin Zolfagharipoor & Ali Akbar Afzali, 2019. "Stability Analysis of Stakeholders’ Cooperation in Inter-Basin Water Transfer Projects: a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 1-18, January.
    8. Mohammad Nikoo & Reza Kerachian & Hamed Poorsepahy-Samian, 2012. "An Interval Parameter Model for Cooperative Inter-Basin Water Resources Allocation Considering the Water Quality Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3329-3343, September.
    9. Mohammad S. Khorshidi & Mohammad Reza Nikoo & Mojtaba Sadegh & Banafsheh Nematollahi, 2019. "A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1999-2014, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Kardan Moghaddam & Saman Javadi & Timothy O. Randhir & Neda Kavehkar, 2022. "A Multi-Indicator, Non-Cooperative Game Model to Resolve Conflicts for Aquifer Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5521-5543, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    2. Jianan Qin & Xiang Fu & Shaoming Peng, 2020. "Asymmetric Benefit Compensation Model for Resolving Transboundary Water Management Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3625-3647, September.
    3. Mehdi Zomorodian & Sai Hin Lai & Mehran Homayounfar & Shaliza Ibrahim & Gareth Pender, 2017. "Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-24, December.
    4. Andrea Caravaggio & Luigi De Cesare & Andrea Di Liddo, 2023. "A Differential Game for Optimal Water Price Management," Games, MDPI, vol. 14(2), pages 1-15, April.
    5. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    6. de Andrade Santana, Rosinele & Marques Bezerra, Saulo de Tarso & Melo dos Santos, Sylvana & Paiva Coutinho, Artur & Lopes Coelho, Isabela Carolina & Silva Pessoa, Ruben Vivaldi, 2019. "Assessing alternatives for meeting water demand: A case study of water resource management in the Brazilian Semiarid region," Utilities Policy, Elsevier, vol. 61(C).
    7. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    8. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    9. Xue Li & Jian Sha & Yue Zhao & Zhong-Liang Wang, 2019. "Estimating the Responses of Hydrological and Sedimental Processes to Future Climate Change in Watersheds with Different Landscapes in the Yellow River Basin, China," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    10. Yuan Zhi & Paul B. Hamilton & Xiufeng Wang & Zundong Zhang & Longyue Liang, 2018. "Game Theory Analysis of the Virtual Water Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4747-4761, November.
    11. Bo Peng & Kun Lei, 2021. "An Analytical Approach for Initial Allocation of Discharge Permits with Consideration of the Water Environmental Capacity and Industrial Technical Feasibility," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    12. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    13. Hamid Kardan Moghaddam & Saman Javadi & Timothy O. Randhir & Neda Kavehkar, 2022. "A Multi-Indicator, Non-Cooperative Game Model to Resolve Conflicts for Aquifer Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5521-5543, November.
    14. Qianwen Yu & Zehao Sun & Junyuan Shen & Xia Xu & Xiangnan Chen, 2023. "Interactive Allocation of Water Pollutant Initial Emission Rights in a Basin under Total Amount Control: A Leader-Follower Hierarchical Decision Model," IJERPH, MDPI, vol. 20(2), pages 1-25, January.
    15. Zhisong Chen & Lingling Pei, 2018. "Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    16. Hadi El-Amine & Ebru K. Bish & Douglas R. Bish, 2018. "Robust Postdonation Blood Screening Under Prevalence Rate Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 1-17, 1-2.
    17. Okura, Fumi & Budiasa, I Wayan & Kato, Tasuku, 2022. "Exploring a Balinese irrigation water management system using agent-based modeling and game theory," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    19. Mohammad Nikoo & Akbar Karimi & Reza Kerachian & Hamed Poorsepahy-Samian & Farhang Daneshmand, 2013. "Rules for Optimal Operation of Reservoir-River-Groundwater Systems Considering Water Quality Targets: Application of M5P Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2771-2784, June.
    20. Mohammad Nikoo & Akbar Karimi & Reza Kerachian, 2013. "Optimal Long-term Operation of Reservoir-river Systems under Hydrologic Uncertainties: Application of Interval Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3865-3883, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:15:d:10.1007_s11269-019-02431-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.