IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i2d10.1007_s11269-018-2129-8.html
   My bibliography  Save this article

Assessing the Adaptability of Water Resources System in Shandong Province, China, Using a Novel Comprehensive Co-evolution Model

Author

Listed:
  • Jiping Yao

    (Beijing Normal University)

  • Guoqiang Wang

    (Beijing Normal University)

  • Weina Xue

    (Shandong Jianzhu University)

  • Zhipeng Yao

    (China National Environmental Monitoring Center)

  • Baolin Xue

    (Beijing Normal University)

Abstract

Studying the complex adaptability of regional water resources systems (WRS) plays an important role in promoting the sustainable utilization of water resources and improving the adaptation of WRS to environmental change. This study proposed a comprehensive co-evolution model, based on the conditions of the elements and on the mechanism of their interaction, to study the adaptive development of WRS. Using the model, the survival fitness of each subsystem, the coordination degree between each subsystem, and the survival fitness of the WRS were obtained, and the main factors that affect the adaptation of the WRS were analyzed. Shandong Province in China was used as an example. The results showed that during 2006–2015, the average annual survival fitness of the resource, social, economic, and ecological subsystems was 0.257, 0.282, 0.257, and 0.251, respectively, which indicated a low adaptability for each subsystem. The coordination degree between each subsystem (resource–society, resource–economy, resource–ecology, social–economic, social–ecological, and economic–ecological) was 0.319, 0.355, 0.334, 0.364, 0.333, and 0.351, respectively, which indicated minimal coordination between each subsystem. The average annual survival fitness of the WRS was 0.551, and the adaptability of the WRS was classified as basic. Further analysis revealed that the coordination problem caused by the interaction of the elements in each subsystem was responsible for the low adaptability. The coordination problem, therefore, places severe constraints on the adaptive development of WRS. Therefore, solving the problem of coordination between elements is fundamental to improving the adaptability of WRS and promoting its sustainable development.

Suggested Citation

  • Jiping Yao & Guoqiang Wang & Weina Xue & Zhipeng Yao & Baolin Xue, 2019. "Assessing the Adaptability of Water Resources System in Shandong Province, China, Using a Novel Comprehensive Co-evolution Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 657-675, January.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:2:d:10.1007_s11269-018-2129-8
    DOI: 10.1007/s11269-018-2129-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2129-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2129-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Zhao & Juliang Jin & Jiezhong Zhu & Jinchao Xu & Qingfeng Hang & Yaqian Chen & Donghao Han, 2016. "Water Resources Risk Assessment Model based on the Subjective and Objective Combination Weighting Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3027-3042, July.
    2. Richard Arsenault & François Brissette & Jean-Stéphane Malo & Marie Minville & Robert Leconte, 2013. "Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2075-2087, May.
    3. Durbach, Ian & Lahdelma, Risto & Salminen, Pekka, 2014. "The analytic hierarchy process with stochastic judgements," European Journal of Operational Research, Elsevier, vol. 238(2), pages 552-559.
    4. Dedi Liu & Xiaohong Chen & Teddy Nakato, 2012. "Resilience Assessment of Water Resources System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3743-3755, October.
    5. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    6. Marie Minville & François Brissette & Stéphane Krau & Robert Leconte, 2009. "Adaptation to Climate Change in the Management of a Canadian Water-Resources System Exploited for Hydropower," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2965-2986, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danieli Mara Ferreira & Marcelo Coelho & Cristovao Vicente Scapulatempo Fernandes & Eloy Kaviski & Daniel Henrique Marco Detzel, 2021. "Deterministic and Stochastic Principles to Convert Discrete Water Quality Data into Continuous Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3633-3647, September.
    2. Yuanfang Wang & Qijin Geng & Xiaohui Si & Liping Kan, 2021. "Coupling and coordination analysis of urbanization, economy and environment of Shandong Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10397-10415, July.
    3. Ning Pang & Xiaoya Deng & Aihua Long & Lili Zhang & Xinchen Gu, 2022. "Evaluation of the Resilience of the Socio-Hydrological System of the Tarim River Basin in China and Analysis of the Degree of Barriers," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    4. Junfang Liu & Baolin Xue & Yuhui Yan, 2020. "The Assessment of Climate Change and Land-Use Influences on the Runoff of a Typical Coastal Basin in Northern China," Sustainability, MDPI, vol. 12(23), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Podinovski, Vladislav V., 2020. "Maximum likelihood solutions for multicriterial choice problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 299-308.
    2. Dongying Sun & Jiarong Gu & Junyu Chen & Xilin Xia & Zhisong Chen, 2022. "Spatiotemporal differentiation and influencing factors of urban water supply system resilience in the Yangtze River Delta urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 101-126, October.
    3. Vijay Pereira & Umesh Bamel, 2023. "Charting the managerial and theoretical evolutionary path of AHP using thematic and systematic review: a decadal (2012–2021) study," Annals of Operations Research, Springer, vol. 326(2), pages 635-651, July.
    4. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    5. Yansong Zhang & Yujie Wei & Yu Mao, 2023. "Sustainability Assessment of Regional Water Resources in China Based on DPSIR Model," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    6. M. Ahmadi & Omid Bozorg Haddad & M. Mariño, 2014. "Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 131-147, January.
    7. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    8. Byungil Kim & Sha Chul Shin & Du Yon Kim, 2017. "A resilience loss assessment framework for evaluating flood-control dam safety upgrades," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 805-819, March.
    9. Richard Arsenault & François Brissette & Jean-Stéphane Malo & Marie Minville & Robert Leconte, 2013. "Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2075-2087, May.
    10. Richard Arsenault & Marco Latraverse & Thierry Duchesne, 2016. "An Efficient Method to Correct Under-Dispersion in Ensemble Streamflow Prediction of Inflow Volumes for Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4363-4380, September.
    11. Heidi Peterson & John Nieber & Roman Kanivetsky & Boris Shmagin, 2013. "Water Resources Sustainability Indicator: Application of the Watershed Characteristics Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1221-1234, March.
    12. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    13. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    14. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    15. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    16. Wang, Bing & Nistor, Ioan & Murty, Tad & Wei, Yi-Ming, 2014. "Efficiency assessment of hydroelectric power plants in Canada: A multi criteria decision making approach," Energy Economics, Elsevier, vol. 46(C), pages 112-121.
    17. Yajing Huang & Linyu Xu & Hao Yin & YanpengCai & ZhifengYang, 2015. "Dual-Level Material and Psychological Assessment of Urban Water Security in a Water-Stressed Coastal City," Sustainability, MDPI, vol. 7(4), pages 1-19, April.
    18. Fatih Tüysüz, 2018. "Simulated Hesitant Fuzzy Linguistic Term Sets-Based Approach for Modeling Uncertainty in AHP Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 801-817, May.
    19. M. Gabriela Sava & Luis G. Vargas & Jerrold H. May & James G. Dolan, 2022. "Multi-dimensional stability analysis for Analytic Network Process models," Annals of Operations Research, Springer, vol. 316(2), pages 1401-1424, September.
    20. Yu, Shiwei & Duan, Haoran & Cheng, Jinhua, 2021. "An evaluation of the supply risk for China's strategic metallic mineral resources," Resources Policy, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:2:d:10.1007_s11269-018-2129-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.