IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i2d10.1007_s11069-016-2717-y.html
   My bibliography  Save this article

A resilience loss assessment framework for evaluating flood-control dam safety upgrades

Author

Listed:
  • Byungil Kim

    (Andong National University)

  • Sha Chul Shin

    (Andong National University)

  • Du Yon Kim

    (Kyungil University)

Abstract

Dams that were designed and built decades ago may not meet current design standards that reflect our improved knowledge of extreme rainfall events. When comparing dam safety upgrades, cost-efficient options that reduce the probability of overtopping are preferred. However, these criteria neglect flood damage costs resulting from controlled water flow inherent to the design of the safety upgrades. Therefore, to address this shortcoming, we apply the concept of resilience to evaluate dam safety upgrade options from a flood damage mitigation perspective through a resilience assessment framework. In this study, resilience is defined as the ability to provide flood-control service after an extreme rainfall event and to recover a desired level of functionality as soon as practicable. This framework features four main steps: estimating the probable maximum flood for the dam under investigation, calculating the dam discharge for each of the upgrade options, quantifying the loss in system resilience, and converting the losses into monetary units. This framework is applied to two dam safety upgrade options (constructing an emergency spillway and increasing dam crest height) for a large dam in Andong, South Korea. In practice, the former option is typically preferred as it is cost-efficient. However, we find that the latter option is superior when accounting for flood damage costs caused by water that is intentionally released from the dam during a probable maximum flood event. This study will help to ensure sound decision making when evaluating dam safety upgrade options by considering not only construction costs but also flood damage costs.

Suggested Citation

  • Byungil Kim & Sha Chul Shin & Du Yon Kim, 2017. "A resilience loss assessment framework for evaluating flood-control dam safety upgrades," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 805-819, March.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:2:d:10.1007_s11069-016-2717-y
    DOI: 10.1007/s11069-016-2717-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2717-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2717-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    2. Steven Wade & Jemima Rance & Nick Reynard, 2013. "The UK Climate Change Risk Assessment 2012: Assessing the Impacts on Water Resources to Inform Policy Makers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1085-1109, March.
    3. Dedi Liu & Xiaohong Chen & Teddy Nakato, 2012. "Resilience Assessment of Water Resources System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3743-3755, October.
    4. Anna Bozza & Domenico Asprone & Gaetano Manfredi, 2015. "Developing an integrated framework to quantify resilience of urban systems against disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1729-1748, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    2. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Lu Liu & Yun Luo & Jingjing Pei & Huiquan Wang & Jixia Li & Ying Li, 2021. "Temporal and Spatial Differentiation in Urban Resilience and Its Influencing Factors in Henan Province," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    4. Dongying Sun & Jiarong Gu & Junyu Chen & Xilin Xia & Zhisong Chen, 2022. "Spatiotemporal differentiation and influencing factors of urban water supply system resilience in the Yangtze River Delta urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 101-126, October.
    5. Huiping HUANG & Yuping HAN & Jinxi SONG & Zhanping ZHANG & Heng XIAO, 2016. "Impacts of climate change on water requirements of winter wheat over 59 years in the Huang-Huai-Hai Plain," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(1), pages 11-19.
    6. Heracleous, Constantinos & Kolios, Panayiotis & Panayiotou, Christos G. & Ellinas, Georgios & Polycarpou, Marios M., 2017. "Hybrid systems modeling for critical infrastructures interdependency analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 89-101.
    7. Thanh Le & Deg-Hyo Bae, 2013. "Evaluating the Utility of IPCC AR4 GCMs for Hydrological Application in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3227-3246, July.
    8. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    10. Hongxun Xiang & Xia Heng & Boleng Zhai & Lichen Yang, 2024. "Digital and Culture: Towards More Resilient Urban Community Governance," Land, MDPI, vol. 13(6), pages 1-18, May.
    11. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Hassan Al-Zarooni & Hamdi Bashir, 2020. "An integrated ISM fuzzy MICMAC approach for modeling and analyzing electrical power system network interdependencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1204-1226, December.
    13. Mingshun Zhang & Yitong Yang & Chun Xia-Bauer, 2021. "Measuring Urban Low-Carbon Sustainability in Four Chinese Cities," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    14. Xinghua Feng & Chunliang Xiu & Jianxin Li & Yexi Zhong, 2021. "Measuring the Evolution of Urban Resilience Based on the Exposure–Connectedness–Potential (ECP) Approach: A Case Study of Shenyang City, China," Land, MDPI, vol. 10(12), pages 1-22, November.
    15. Heidi Peterson & John Nieber & Roman Kanivetsky & Boris Shmagin, 2013. "Water Resources Sustainability Indicator: Application of the Watershed Characteristics Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1221-1234, March.
    16. Yun, Lifen & Wang, Xifu & Fan, Hongqiang & Li, Xiaopeng, 2020. "Reliable facility location design with round-trip transportation under imperfect information Part I: A discrete model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    17. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    18. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2021. "Integrated methods to determine urban physical resilience characteristics and their interactions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 725-754, October.
    19. Chao Feng & Jingjie Wu & Juan Du, 2022. "Construction and Evaluation of a Safe Community Evaluation Index System—A Study of Urban China," IJERPH, MDPI, vol. 19(17), pages 1-22, August.
    20. Murrant, Daniel & Quinn, Andrew & Chapman, Lee & Heaton, Chris, 2017. "Water use of the UK thermal electricity generation fleet by 2050: Part 2 quantifying the problem," Energy Policy, Elsevier, vol. 108(C), pages 859-874.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:2:d:10.1007_s11069-016-2717-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.