IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i7p2075-2087.html
   My bibliography  Save this article

Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System

Author

Listed:
  • Richard Arsenault
  • François Brissette
  • Jean-Stéphane Malo
  • Marie Minville
  • Robert Leconte

Abstract

This paper discusses the possibility for a privately managed hydro-power system to adapt to a projected increase in water flow in their central-Québec watersheds by adding power generation potential. Runoffs simulated by a lumped rainfall-runoff model were fed into a stochastic dynamic programming (SDP) routine to generate reservoir operating rules. These rules were optimized for maximum power generation under maximal and minimal reservoir level constraints. With these optimized rules, a power generation simulator was used to predict the amount of generated hydropower. The same steps, excluding calibration, were performed on 60 climate projections (from 23 general circulation models and 3 greenhouse gas emission scenarios) for future horizons 2036–2065 and 2071–2100. Reservoir operation rules were optimized for every climate change projection for the 3 power plants in the system. From these simulations, it was possible to determine hydropower numbers for both horizons. The same steps were performed under a modified system in which an additional turbine was added to each power plant. Results show that both the non-structural (optimizing reservoir rules) and structural (adding turbines) adaptation measures allow for increased power production, but that adapting operating rules is sufficient to reap the most of the benefits of increased water availability. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Richard Arsenault & François Brissette & Jean-Stéphane Malo & Marie Minville & Robert Leconte, 2013. "Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2075-2087, May.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2075-2087
    DOI: 10.1007/s11269-013-0275-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0275-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0275-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Cullis & Ken Strzepek & Mark Tadross & Karim Sami & Beyers Havenga & Burgert Gildenhuys & Joel Smith, 2011. "Incorporating climate change into water resources planning for the town of Polokwane, South Africa," Climatic Change, Springer, vol. 108(3), pages 437-456, October.
    2. Hyung-Il Eum & A. Vasan & Slobodan Simonovic, 2012. "Integrated Reservoir Management System for Flood Risk Assessment Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3785-3802, October.
    3. Marie Minville & François Brissette & Stéphane Krau & Robert Leconte, 2009. "Adaptation to Climate Change in the Management of a Canadian Water-Resources System Exploited for Hydropower," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2965-2986, November.
    4. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    5. Marie Minville & Stéphane Krau & François Brissette & Robert Leconte, 2010. "Behaviour and Performance of a Water Resource System in Québec (Canada) Under Adapted Operating Policies in a Climate Change Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1333-1352, May.
    6. Pascal Hänggi & Rolf Weingartner, 2012. "Variations in Discharge Volumes for Hydropower Generation in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1231-1252, March.
    7. Andre Ferreira & Ramesh Teegavarapu, 2012. "Optimal and Adaptive Operation of a Hydropower System with Unit Commitment and Water Quality Constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 707-732, February.
    8. Noora Veijalainen & Tanja Dubrovin & Mika Marttunen & Bertel Vehviläinen, 2010. "Climate Change Impacts on Water Resources and Lake Regulation in the Vuoksi Watershed in Finland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3437-3459, October.
    9. Hefa Cheng & Yuanan Hu, 2012. "Improving China’s water resources management for better adaptation to climate change," Climatic Change, Springer, vol. 112(2), pages 253-282, May.
    10. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Arsenault & Marco Latraverse & Thierry Duchesne, 2016. "An Efficient Method to Correct Under-Dispersion in Ensemble Streamflow Prediction of Inflow Volumes for Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4363-4380, September.
    2. Jiping Yao & Guoqiang Wang & Weina Xue & Zhipeng Yao & Baolin Xue, 2019. "Assessing the Adaptability of Water Resources System in Shandong Province, China, Using a Novel Comprehensive Co-evolution Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 657-675, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirali Amir Jabbari & Ali Nazemi, 2019. "Alterations in Canadian Hydropower Production Potential Due to Continuation of Historical Trends in Climate Variables," Resources, MDPI, vol. 8(4), pages 1-29, September.
    2. Uriel Huaringa Alvarez & Mélanie Trudel & Robert Leconte, 2014. "Impacts and Adaptation to Climate Change Using a Reservoir Management Tool to a Northern Watershed: Application to Lièvre River Watershed, Quebec, Canada," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3667-3680, September.
    3. Ryan MacDonald & James Byrne & Sarah Boon & Stefan Kienzle, 2012. "Modelling the Potential Impacts of Climate Change on Snowpack in the North Saskatchewan River Watershed, Alberta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3053-3076, September.
    4. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    5. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2019. "The role of glacier retreat for Swiss hydropower production," Renewable Energy, Elsevier, vol. 132(C), pages 615-627.
    6. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    7. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    8. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    9. Luisa Liucci & Daniela Valigi & Stefano Casadei, 2014. "A New Application of Flow Duration Curve (FDC) in Designing Run-of-River Power Plants," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 881-895, February.
    10. Asmadi Ahmad & Ahmed El-Shafie & Siti Razali & Zawawi Mohamad, 2014. "Reservoir Optimization in Water Resources: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3391-3405, September.
    11. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    13. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    14. Haiyan Fang & Zemeng Fan, 2021. "Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6259-6278, April.
    15. Malte Grossmann & Ottfried Dietrich, 2012. "Integrated Economic-Hydrologic Assessment of Water Management Options for Regulated Wetlands Under Conditions of Climate Change: A Case Study from the Spreewald (Germany)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2081-2108, May.
    16. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    17. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    18. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    19. Donna, Javier D. & Espin-Sanchez, Jose, 2018. "Are Water Markets Liquid? Evidence from Southeastern Spain," MPRA Paper 117032, University Library of Munich, Germany.
    20. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2075-2087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.