IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i14p4977-4993.html
   My bibliography  Save this article

Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application

Author

Listed:
  • Kun Cheng
  • Qiang Fu
  • Xi Chen
  • Tianxiao Li
  • Qiuxiang Jiang
  • Xiaosong Ma
  • Ke Zhao

Abstract

Currently, water and land resources are treated as separate resources in allocation optimization for complex systems of water and land resources, which may have negative impacts on these water-land resource systems. In our study, an adaptive allocation model was established for a complex system of regional water and land resources using complex adaptive systems theory. The users of water and land resources were treated as adaptive agents, and the competition and synergy among various agents toward water and land resources were used as the driving forces for the evolution of the model. The model was accurately solved using a nested genetic algorithm to achieve the optimal joint allocation of regional water and land resources. A case study was conducted in the city of Kiamusze in Heilongjiang Province, and the results indicated that the evolution of the model was consistent with the actual behaviors of adaptive agents. Moreover, after the implementation of the optimized allocation results, the economic benefits in the study area were expected to increase by 3.34 %, and the comprehensive user satisfaction index regarding water increased from 0.61 to 0.73; moreover, the ecological footprint of the ecological sector increased by 5.6 %. Our results provide important guidance for achieving the sustainable use of regional water and land resources. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:4977-4993
    DOI: 10.1007/s11269-015-1099-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1099-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1099-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lina Sun & Wenxi Lu & Qingchun Yang & Jordi Martín & Di Li, 2013. "Ecological Compensation Estimation of Soil and Water Conservation Based on Cost-Benefit Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2709-2727, June.
    2. Qi Wang & Enrico Creaco & Marco Franchini & Dragan Savić & Zoran Kapelan, 2015. "Comparing Low and High-Level Hybrid Algorithms on the Two-Objective Optimal Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 1-16, January.
    3. Rammel, Christian & Stagl, Sigrid & Wilfing, Harald, 2007. "Managing complex adaptive systems -- A co-evolutionary perspective on natural resource management," Ecological Economics, Elsevier, vol. 63(1), pages 9-21, June.
    4. Stern, David I. & Common, Michael S. & Barbier, Edward B., 1996. "Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development," World Development, Elsevier, vol. 24(7), pages 1151-1160, July.
    5. Jie Liu & Shao-yu Wang & Dong-mei Li, 2014. "The Analysis of the Impact of Land-Use Changes on Flood Exposure of Wuhan in Yangtze River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2507-2522, July.
    6. Lulseged Tamene & Quang Le & Paul Vlek, 2014. "A Landscape Planning and Management Tool for Land and Water Resources Management: An Example Application in Northern Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 407-424, January.
    7. Barbier, Edward B., 1989. "Cash crops, food crops, and sustainability: The case of Indonesia," World Development, Elsevier, vol. 17(6), pages 879-895, June.
    8. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    9. Lei Jin & Guohe Huang & Yurui Fan & Xianghui Nie & Guanhui Cheng, 2012. "A Hybrid Dynamic Dual Interval Programming for Irrigation Water Allocation under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1183-1200, March.
    10. Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
    11. Juana Moiwo & Fulu Tao, 2014. "Evidence of Land-use Controlled Water Storage Depletion in Hai River Basin, North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4733-4746, October.
    12. T. Cohen Liechti & J. Matos & J.-L. Boillat & A. Schleiss, 2015. "Influence of Hydropower Development on Flow Regime in the Zambezi River Basin for Different Scenarios of Environmental Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 731-747, February.
    13. Kathrin Knüppe & Claudia Pahl-Wostl, 2011. "A Framework for the Analysis of Governance Structures Applying to Groundwater Resources and the Requirements for the Sustainable Management of Associated Ecosystem Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3387-3411, October.
    14. Rasmussen, Laura Vang & Rasmussen, Kjeld & Reenberg, Anette & Proud, Simon, 2012. "A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel," Agricultural Systems, Elsevier, vol. 107(C), pages 56-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Fu & Ke Zhao & Dong Liu & Qiuxiang Jiang & Tianxiao Li & Changhong Zhu, 2016. "Two-Stage Interval-Parameter Stochastic Programming Model Based on Adaptive Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2097-2109, April.
    2. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    3. Jianwei Wang & Tianling Qin & Xizhi Lv & Yongxin Ni & Qiufen Zhang & Li Ma, 2023. "Study of Optimal and Joint Allocations of Water and land Resources for Multiple Objectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1241-1256, February.
    4. Jiping Yao & Guoqiang Wang & Weina Xue & Zhipeng Yao & Baolin Xue, 2019. "Assessing the Adaptability of Water Resources System in Shandong Province, China, Using a Novel Comprehensive Co-evolution Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 657-675, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Molina-Navarro & S. Martínez-Pérez & A. Sastre-Merlín & R. Bienes-Allas, 2014. "Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2129-2143, June.
    2. Walter Chen & Kent Thomas, 2020. "Revised SEDD (RSEDD) Model for Sediment Delivery Processes at the Basin Scale," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    3. Ockwell, David G., 2008. "Energy and economic growth: Grounding our understanding in physical reality," Energy Policy, Elsevier, vol. 36(12), pages 4600-4604, December.
    4. Lulseged Tamene & Quang Le & Paul Vlek, 2014. "A Landscape Planning and Management Tool for Land and Water Resources Management: An Example Application in Northern Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 407-424, January.
    5. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    6. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    7. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    8. G. Mythili & Shibashis Mukherjee, 2011. "Examining Environmental Kuznets Curve for river effluents in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 627-640, June.
    9. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    10. Yang Shen & Xiuwu Zhang, 2022. "Study on the Impact of Environmental Tax on Industrial Green Transformation," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    11. R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & S. Singh, 2014. "Watershed Prioritization Using Saaty’s AHP Based Decision Support for Soil Conservation Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 475-494, January.
    12. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    13. Wilman-Santiago Ochoa-Moreno & Byron Alejandro Quito & Carlos Andrés Moreno-Hurtado, 2021. "Foreign Direct Investment and Environmental Quality: Revisiting the EKC in Latin American Countries," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    14. Andreoni, James & Levinson, Arik, 2001. "The simple analytics of the environmental Kuznets curve," Journal of Public Economics, Elsevier, vol. 80(2), pages 269-286, May.
    15. Karp, Larry S. & Liu, Xuemei, 1998. "Valuing Tradeable Co2 Permits For Oecd Countries," CUDARE Working Papers 25054, University of California, Berkeley, Department of Agricultural and Resource Economics.
    16. ITALO ARBULÚ VILLANUEVA Author-Workplace-Name: Málaga-Webb & Asociados, 2012. "Introducing Institutional Variables In The Environmental Kuznets Curve (Ekc): A Latin American Study," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 71-81, March.
    17. Basarab Gogoneaţă, 2010. "The Long-Run Relationship Between Commerce And Sustainable Development In Baltic And Central And Eastern European Countries," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 12(27), pages 36-51, February.
    18. Costantini, Valeria & Monni, Salvatore, 2008. "Environment, human development and economic growth," Ecological Economics, Elsevier, vol. 64(4), pages 867-880, February.
    19. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    20. Datu Buyung Agusdinata & Rimjhim Aggarwal & Xiaosu Ding, 2021. "Economic growth, inequality, and environment nexus: using data mining techniques to unravel archetypes of development trajectories," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6234-6258, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:4977-4993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.